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1 INTRODUCTION 

Most of the research into tracked vehicles deals with terramechanics, namely with the interaction 
between the vehicle and the terrain (Wong et al, 1984). The tracked vehicle community is 
particularly interested in off-road vehicle performance. Motion control of a tracked vehicle is a 
relatively new area. This is mainly due to the fact that the kinematics of a tracked vehicle is very 
complex since there are an infinite number of contact points between the track and the terrain and 
infinite closed-link chains which make slippage unavoidable. Both of these factors make the 
modeling of a tracked vehicle very difficult. However, in order to improve the motion accuracy of 
autonomous tracked vehicles, a model is required. In this paper we introduce a simple orientation 
model for tracked vehicles which uses the effective wheel diameter. This model is based on the 
observation that a tracked mobile robot resembles a regular differential drive robot with two driving 
wheels when only straight-line motion is considered. For an arbitrary nonlinear motion the control 
problem is very complicated and the general solution is not yet known. 

There are many factors that affect the motion accuracy of a tracked mobile robot. In general, 
motion errors can be decomposed into two classes: internal errors and external errors. Internal 
errors relate to control loop and drive errors, and can be detected by the wheel encoders. The main 
internal error sources are different drive loop parameters and different disturbances acting on each 
loop. External errors can be detected only with absolute motion measurements. The main external 
systematic errors are cause by different wheel diameters and wheel misalignment. External 
nonsystematic errors include wheel slippage and floor roughness. Under normal condition, the 
largest component of motion errors is due to systematic errors (Borenstein et al, 1985; Banta, 
1988; Feng, 1992; Wang, 1987). 

Motion errors can be decomposed into orientation errors, contour errors, and tracking errors as 
shown in Figure 1. The vehicle is instructed at point A, but it is at point B. The orientation error 
EO is defined as the angular difference between the actual orientation and the desired orientation. 
The contour error E, is the distance between the actual position B and the desired trajectory in the 
direction perpendicular to the direction of travel. The tracking error E,is the distance between the 
actual position and the desired position in the direction of travel. In mobile robot motion control, 
the orientation errors are the dominant errors since they cause unbounded growth of the contour 
errors. The tracking errors are usually of less concern (Feng. 1992). 
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TRACKED MOBILE ROBOT CONTROL 

Specified 
trajdov & 

Fig. 1. Motion Error Diagram 

Our approach employs the use of two control algorithms: a cross-coupling control algorithm to 
compensate for the internal errors, and an adaptive control algorithm to compensate for the external 
errors. The combination of these two control algorithms is the hybrid motion control. 

Adaptive control has been widely used in the control of manipulators (Slotine et al, 1987). 
However, the application of adaptive control to mobile robots has been limited. Feng (1992) 
applies a model-reference adaptive control (MRAC) technique to a wheeled robot to guarantee 
performance convergence. However, this approach cannot normally guarantee parameter 
convergence. Without converged parameters, a mobile robot must run continuously with external 
sensors in order to achieve the desired position. Unfortunately, many external sensors are both 
financially and computationally expensive and may require modification of the environment. 
Therefore, this paper uses MRAC to identify parameters, with guaranteed parameter convergence 
as well as performance convergence (Landau, 1979). (The detailed proof is given in Section 4). 
With converged parameters, the system will have the desired performance without using any 
external sensors. 

In the organization of this paper, a simple tracked mobile robot is briefly described in Section 2. 
Compensation for internal errors is discussed in Section 3. In Section 4, the stability and 
parameter convergence are derived for the parametric identification with MRAC. The performance 
of the hybrid motion control is evaluated by experiment. Conclusions are given in Section 5. 

2 TRACKED MOBILE ROBOT MODEL 

Referring to Figure 2, the location and orientation of a tracked mobile robot for straight line motion 
can be estimated based on dead-reckoning (Banta, 1988, Wang, 1987): 

where X, Y, and 0 are the position and orientation of the center of gravity of the tracked vehicle, b 
is the distance between the two driving wheels and VL and VR are the measured velocities of the 
two driving wheels. 
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128 ZHEJUN FAN ET AL 

Wg. 2. Coordinale System 

Figure 3 shows the hacked robot used in the experiments. The platform consists of a main chassis 
with two main tracks and front and rear auxiliary tracks. The vehicle is 723.9 mm wide, 1092.2 
mm high and 1574.8 mm long. The weight of the fully-quipped vehicle is 3115 N. 

Fig. 3. REMOTEC ANDROS 

The REMOTEC ANDROS platform was modified to accept our motion controlled and 
corresponding software. The core of the controlled is the Hewlett Packard HCTL-1100 CMOS 
motor control chip. The chip features fully programmable parameters. The new controlled 
communicates with the host computer through parallel communication via a DG96 digital I/O 
board. 

3 ERROR COMPENSATION BY CROSS-COUPLING CONTROL 

Traditionally, the two driving wheels of a mobile robot are controlled independently by two control 
loops (Cox, 1991). Either loop receives no information about the other, and therefore any 
disturbance on one wheel causes an error that is corrected only by its own control loop, while the 
other loop carries on as before This lack of coordination causes errors in the resultant path. 
Cross-coupling control has been inuoduced to remedy this problem by sharing the error 
information of both control loops (Koren, 1980). It has been proven that a robotic system utilizing 
corss-coupling conml can guarantee zero steady-state internal orientation errors despite continuous 
torque disturbances (Feng, 1992). Thus, the cross-coupling control scheme is used to directly 
compensate for the most significant internal errors, which are the orientation errors. by 
coordinating the motion of the two drive loops, as shown in Figure 4. 
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fig. 4. clD.scoupliog Cootr0ue-r 

3.1 Steady-State Analysis 

When the cross-coupling control loop has reached its steady state, we can apply final value 
theorem to this two input two output system and obtain an expression for the steady state value of 

and wq, respectively. 

where 
R, .R, = the right mi left whcel annmand velocities 
V, ,VL = the right and left whcel actual velocities 
m,.m, = the right and I& wheel angular velocities 
C, .CL = the right mi I& wheel canpermtian gains 

K, .K, = the I& and right drive loop DC gains 
TL .T, = the left and right drive loop time wnstauts 

r = 146 mm, the assumed nominal wheel radius 
for both I& and right drive loop 

r, ,r, = the actual left and right wheel radii 

K, ,K, = the proportional and integral gains 
for a PI controller 

The sampling time for the cross-coupling control loop only is about 30 ms. Since the sampling 
time for the adaptive control loop is 500 ms, as it requires two additional ultrasonic sensors to 
measure the external orientation of the mobile robot, (discussed in Section 4), it can be assumed 
that the cross-coupling controlled is at its steady state when adaptive control was applied later. 
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Combiming Egs. (4) and (5) yields: 
a~ - c ~  --- (a) 
OR c~ 

Substitute Eq. (6) into V, =r,,o,, and V, =r,a, 
to get 

YL, CR r, 
0 

VR CL r, 

Combine Eqs. (3) - (7) to eliminate V, and V, and 
obtain an expression for the angular velocity, i) : 

( l - ~ ~ x ~ ,  +R& r,, 
i= CL 'R 

CRKR Bpu (8) (1 + -9 
CLKL 

For simplicity, we set C, = 1 and rL = rn = r . SO: 

- 
KL 

Applying least square estimation to get the left and 
right drive loop DC gains: 

K, = 7.608. lo4 and K,, = 7.458*10" 
'Ibenfare: 

L a 9 8  
KL 

Eq. (8) constitutes a simple orientation inodel. For any given control input u, if Bp can be 
estimated with MRAC, the desired CR can be found which is equivalent to the ratio between the 
two wheel radii, as shown below. 

In the above analysis, it is assumed that the two tracks have the same effective wheel diameters. 
However, the parameters for the motor can be different, From Eq. (7). it can be seen that cross- 
coupling control will guarantee that V f l ~  is equal to CR/& Therefore, the ratio between the two 
track measured velocities can be set by the selection of the ratio between two track compensation 
gains. For straight line motion: 
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TRACKED MOBILE ROBOT CONTROL 131 

If the two wheel diameters are not the same. Eq. (8) can be set to zero to obtain the following 
equation: 

then, V, = VL will be obtained if 

Therefore, it can be concluded that for a straight-line motion, CR is equivalent to the ratio between 
r~ and r~ if we assume CL = 1. Parametric identification will be used to find CR. 

3.2 Experimental Results for Cross-coupling Control 

In the fnst experiment, the robot is instructed to move on a straight-line path. The input velocity 
for each track is 100 mm/s. The sampling time is 30 ms. The two wheels are assumed to have the 
same wheel diameters. Figure 5 shows the difference between the measured track velocities using 
proportional and cross-coupling control respectively. Under proportional control the average 
velocity difference is not zero because the two drive loops have different parameters and 
disturbances. However, the average velocity differences is indeed zero with the cross-coupling 
control. Figure 6 shows the resulting differences in the position error. Notice that the position 
error for the proportional control is unbounded. while the position error for the cross-coupling 
control is near zero. 

r H  

(3) 
Fig. 5. Velocity Diff- for (a) Roportional 

and (b) Ctrssaupling Control 

-u 

@I 
Fig. 6. Position Emws for (a) Proportional and (b) 

Crosscoupling Control 
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ZHEJLIN FAN ET AL. 

From the experimental results, it can be concluded that the proposed cross-coupling controller can 
more accurately control the robot by coordinating the motions in both drive loops in spite of 
different parameters and disturbances in the left and right motors. However, it cannot handle the 
external error such as the different effective wheel diameters. 

4 COMPENSATION FOR EXTERNAL ERRORS BY ADAPTIVE CONTROL 

The cross-coupling controller is very effective in compensating for the internal errors such as 
different parameters in the left drive loop and the right drive loop. It guarantees that the actual 
angular velocities of the left wheel and the right wheel are the same for a straight-line motion. 
However, if the two effective wheel diameters are different, the distances traveled by the two 
wheels will be different even though their angular velocities are the same, which will cause 
orientation error and consequently unbounded position errors. These are systematic external errors 
that cannot be compensated for by cross-coupling control. As shown in (Borenstein, 1992). a 1 
rnrn deviation in the nominal 114 mrn wheel diameter can cause up to 8.3 degree orientation error 
and a 0.74 m lateral position error for a planned 10 m straight-line motion. 

In order to compensate for the orientation errors due to different wheel diameters, parametric 
identification with model reference adaptive control can be used to estimate the parameter CR. The 
adaptive loop will use the orientation information measured by two sonars in real-time to estimate 
the internal parameters, and will result in smaller orientation errors. 

4.1 Hyperstability Approach 

The three basic approaches considered in the design of an' MRAC system were based on the use of 
local parametric optimization theory, Lyapunov function, and hyperstability (Landau, 1979). 
Among those approaches, hyperstability was selected since it allows the choice of a class of 
Lyapunov functions in order to widen the class of control laws which lead to a globally stable 
MRAC system. 

The hyperstability approach starts by analyzing the stability of the system and then choosing the 
best adaptation gains from all the stable systems. The design procedure starts by transforming the 
MRAC system into the form of an equivalent feedback system composed of two blocks, one in the 
feedforward path and one in the feedback path. Then the solutions are found for the part of the 
adaptation laws that appears in the feedback path of the equivalent system so that the Popov 
integral inequality is satisfied. Then solutions are found for the remaining part of the adaptation 
law that appears in the feedforward path such that the feedforward path is a hyperstable block. 
Finally, the adaptation law is transformed back to the original MRAC system. 

4.2 Main Concept 

The objective is to find the ratio between the two effective wheel radii ( r ~ l r t )  in order to 
compensate for external errors. If Bp can be estimated, then CR can be found from Eq. (9). 
Parameter identification with MRAC is used to estimate Bp as shown in Figure 7. 
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TRACKED MOBILE ROBOT CONTROL 

fig. 7. Parallel Identifier 

The process to be identified is represented here by the reference model. The estimation model 
consists of an adjustable model of the process whose parameters are driven by an adaptation 
mechanism which implements an identification algorithm. Main definitions and theorems are given 
in the Appendix A. 

4.3 Design of the Parametric Identification 

From the analysis of cross-coupling control. the process (reference model) can be represented as 

According to Eq. (13) our reference model has a pole at s = 0 and the hyperstability approach will 
only assure the hyperstability of the equivalent feedback system instead of asymptotic 
hyperstability. To overcome this problem, a ke term was introduced in the estimation model: 

With this modification in the model, asymptotic hyperstability and parameter convergence will be 
guaranteed, as proven in Appendix B. The full scheme of the adaptive system derived in Appendix 
B is  given in Figure 8. 

Fig. 8. Parametric Identification with MRAC 
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134 ZHEJUN FAN E T  A L  

4.4 Adaptive Controlled Hardware 

The vehicle orientation information is measured by two ultrasonic sensors as shown in Figure 9. 
The two sensors are 840 mm apart and each sensor is fired at least once every 80 ms. The 
effective range of the sensors is about 450-2000 mm. In the experiment, the robot is instructed to 
move parallel to a straight wall at a distance of 700 mm away from the wall. The average time 
interval of hybrid motion control is about 0.5 seconds and the accuracy of the orientation 
measurement is about 0.1 degree. 

Fig. 9. OrieIltaIioo sensors for adaptive coornl 

4.5 Experimental Results for Adaptive Control 

In the following experiment, the robot is instructed to move along a wall. The command velocity 
for each track is 20 + 5* sin (nl8)t 4 s .  We select such a range command velocities to ensure 
parameter convergence. The controller sampling time is 500 ms. In the estimation model, Bs is 
adjusted until it converges to Bp. Since a low value of kl in Eq. (27) can reduce the effect of 
noise, kl = 1 was selected. Based on the experiments, k = 10 gives the best results over the range 
we expected.. 

From Figure 10 it can be seen that CR did not converge to a fixed value quite as was expected. 
This is because the real system contains noise and the measured orientation was accurate to only 
about 0.1 degree. However, after 1 second, the variation about the average is relatively small. 
hocessing the data for CR, after 1 second, gives: CR = 1.003 

I L U I  a 

Fig. 10. Parametu CR versus Time 
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TRACKED MOBILE ROBOT CON'TROL 135 

Since the nominal wheel diameter is 292 mrn for the tracked mobile robot, there is a 0.876 mm 
difference between the two effective wheel diameters. 

In order to check the accuracy of this identified parameter, the hxcked vehicle was made to move 4 
m in a straight-line path 10 times, with the parameter CR identified by hybrid control. For 
comparison, we repeated the experiment with cross-coupling control only. The results are shown 
in Table 1. 

Table I 

The results shown in Table 1 demonstrate that hybrid control is much better than regular cross- 
coupling control alone. Even with this identified parameter, the error is not zero due to noise, 
sensor inaccuracies, and unmodeled dynamics. 

Figure 11 shows that orientation error is indeed bounded. The average error approaches zero after 
1 second. Due to the orientation sonar inaccuracies. unmodeled dynamics and random noise, it 
oscillated around the zero value. 

I ' i r .. .. .. 
5 CONCLUSION 

w- 

fig. I I .  Orientation E m  v m  T i e  

This paper offers a simple controller saucture and identification algorithm for a complex tracked 
mobile robot. The experimental results show that the cross-coupling control is very effective in 
reducing the internal errors due to the different parameters in each motor. The adaptive controller 
is effective in reducing the systematic extemal errors such as different effective wheel diameters. 
The hybrid motion control which combines the cross-coupling control with the adaptive control 
was shown to be effective in compensating both for the internal errors and extemal errors. 
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APPENDIX A 

In order to prove the global stability and parameter convergence, consider the feedback system 
depicted in Figure 12. The system is formed by a linear time-invariant feedforward block and 
feedback block which can be linear or nonlinear and time-invariant or time-varying. 

Fig. 12 Nonlinear Feedback System 

The feedback system represented in Figure 12 is termed (asymptotically) hyperstable if it is 
(asymptotically) globally stable with aU the feedback blocks satisfying Popov integral inequality. 
Eq .  (15):  

t t )  d for all 4 > b (15) 
1. 

Consider the closed system having a feedfornard 
block 

i=Ax+Bu=Ax-Bw (16) 
v = Cx+ Ju= Cx- Jw (17) 

and a feedback block 
w = f(v,t) (18) 

which satisfies the Popov inregml incqualify 
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TRACKED MOBILE ROBOT CONTROL 137 

The necessary and sufficient condition for the feedback system described by Eqs. (15) through 
(18) to be hyperstable is that the transfer mahix 

~ ( s )  = J + q d  -A)-'B (19) 

must be a positive real transfer matrix (Landau, 1979). The necessary and sufficient condition for 
the feedback system described by Eqs. (15) through (18) to be asymptotically hyperstable is that 
the transfer matrix of Eq. (19) must be a strictly positive real transfer matrix. 

Given a globally asymptotically stable identifier with each of the components of the input vector u 
formed by a sum of sinusoidal signals of distinct frequencies, one obtains parameter convergence 

where the subscripts P and S refer to the process and simulated systems and 

i =A,x+B,u. ~ ( 0 )  I, rcpmsents the prazrs 
Y =A,y+B,u, ~ ( 0 )  = y o .  A,(O) =A, 
B, (0) a B, rcpmenfs the estimation model 

if (1) the plant to be identified is completely controllable; (2) the components of the vector u are 
linearly independent; and (3) each component of the vector u contains at least (n+1)/2 distinct 
frequencies, where n is the order of the system. 

APPENDIX B 

The uror equation can be expressed as 
e = 8 , - 8 ,  (20) 

i = -ke + (B,  - B,)u (21) 
where B, is given by an expression having the 
standard form . 

B; = j c ) d r + ~ ; ( 0 )  (22) 
0 

Then the error equation can be expressed as 
e = - k e + w ,  (23) 

where 

Eqs. (23) - (24) can be represented as 

I" ]B.(o)-B, 
Fig. 13. Equivalent Representation of the MRAC 
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Find 4 such that the following Popov inregml 
inequality is satisfied: 

. . 

In order to prove the Popov integral inequality, it 
can be assumed that 

Therefore the Popov integral inequality is satisfi 
with 

r', = k,f1(0)/2 (zs) 

The exp&on of #and w is: 
# = k, f ( t )  = k,eu 

By finding a solution for 0 which satisfies the Popov integral inequality, the problem has been cast 
into a hyperstability problem. By finding the conditions for the feedforward equivalent path which 
will assure asymptotic hyperstability, the asymptotic stability of the MRAC is guaranteed. From 
Appendix A, the necessary and sufficient condition for this feedback system to be asymptotically 
hyperstable is that the transfer function from u to e is a strictly positive real transfer function. 
Since the transfer function from u to e in this system can be expressed as 

h(s) is indeed a strictly positive real transfer function when k>O. 

Therefore the closed-loop MRAC is asymptotically 
hyperstable and lim41) = 0. it can be concluded 

1 4 -  

Lbat IimB, =B, if u contains at least (l+l)~% r l  
1 4 -  

frequency and the process to be identified is completely controllable. Those conditions are 
satisfied in this case. 

The return to the original system in this case is obvious because one already explicitly has the term 
of the adjustable parameter Bs. 
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