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MATHEMATICAL MODEL FOR THE 'FLANK
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ABSTRACT

Design of optimal control for a machine tool necessitates a mathematical model
of the machining process, in view of the unfeasibility of carrying out all tests on
the machine. A model for stee] turning with a carbide tool was developed accordingly,
yielding the relation between the process parameters icutting speed, feed depth of
cut and rake angle) on the one hand, and tool wear (the unknown function in the
performance index of the optimization) on the other. The internal variables of the
model are tool temperature and the vertical cutting force. Results are analysed and
compared with those known from literature,

NOTATION

F — vertical cutting force
C Gy C o i .

Coc | coefficients in force formula
v — cutting speed

0 — femperature

0 — final temperature

a

T — tool life

B “— wear land

a — depth of cut

s — feed

4 — time

y — rake angle

Ty — force time constant

T, — tempcerature time constant

P ~— Laplace transformation complex-variable

* This paper is part of Dr.Y. Koren’s D. Sc. Thesis; Professors J. Ben-Uri, E. Lenz, and

D. Graupe were his supervisors. ) : .
#* The authors are members of the Faculty of Mechanical Engineering, Technion — Israel
Institute of Technology, Haifa, Israel. ' . ; . "3 :
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INTRODUCTION

The study of machine tool optimization comprises two stages:

I. identification of the system, including the machine behavior (tool wear,
forces, temperatures, vibration, etc.); :

2. the optimization proper, the problem consisting in solution of controllable process

conditions (cutting speed, feed, depth of cut, tool angles) with a view to the required
product quality and 1o minimum cost.

The identification stage may consist in developing cither the deterministic or a
probabilistic model. The present study yielded a model of the former type, capable
of transformation into the latter type by incorporating a noise source. The model
is partial. and interrelates the cutting force, tool lemperature and tool wear.

The wear land, rather than the crater, was taken as wear criterion. A com-

prehensive study of the wear fand by Miiller!'", yielded four expressions fot its
time behavior:

- ()
B =oay* + pp, 05<x<| (2)
B = a5t + 31 = exp (—y,n] (3)
B =a,in(l + p,1) + y" (4)

Where 2., a,, ay, Lo Bas fay Bav 920 v40 are constants.,
Although the last two cxpressions proved to be good approximations to cx-
perimental curves, Miiller's work offers no physical interpretation. The present

paper proposes a formula which, simplified, leads to eq. (3).

CUTTING FORCE

The proposed model considers only the main (vertical) cutting force. Its depen-
dence on the feed rate and the chip depth is usually given by:

F'=C.y"a (5)

where €, depends on the stecl type. The cxponent u, according to various
sources'" > 21 ranpes from 0.74 to 0.82, with an average of 0.76.
The author found that a more accurate expression is:

F=C.s" — ca (6)

where ¢ is constant equal about 5% of C,. In thc example shown in Fig. 1, the force
is plotted against the feed during ongitudinal turning of 2 Kh 13 steel. tool
20A-0, a=4mm, r=110 m/min (data reproduced from Ref. [2]), Fig. 125). It is
seen that the relationship F = 7005°7¢ — 35 is in better agreement with mea-
surement results than F = 665 s°-82,

In addition to the factors appearing in cq. (5), the cutting force depends also
on the back rake angle y and the cutting speed r. It is known that the force decreascs
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with increasing y. According to charts | to § in Ref. [2], the decrease is given by:
F= Fn‘/(l - ny) (7)

where £, is thc main force for y = 0.

If y is in degrecs, C, ranges from 0.009 to 0.011 according to the steel type, the

average being C, = 0.01, '

The relation between the force and the cutting spced i= more complicated.
fninally, the force increases with the specd up to the level of 20 m/min*and sub-
sequently decreases: above 60 msmin (carbide tools) this decrease may be regarded
as lincar. with a slope which is lincar with cutting depth:

F=F,~Cra (8)
where £, and C,. are constants.

It Fisin kp and v in m/min. C, is about 0.01,

Egs. (6), (T) and (8) may be combined into a gencral expression for the vertical
cutting force:

F={Cs"l=Cy)—c~Cyvla )
F (kp]
700\~

600|- :
5001--

oot~

2001~ g55002

7005976 - 35

100 | ] | I O |
0, 02 03 04 0506 08 10 sCmm/rev]
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Figure 1. Force vs. feed rate (conventional and new formuloe)

TEMPERATURE

Itis assumed that the tool temperature obeys the following differential equation:
t0+0=0, (10)

where 0, is the final temperature and 7, the time constant of the process. According
to Refs. (1) and (3), the time constant ranges from 10”2 to 10™*sec., while 0,
depends on the cutting speed, force, feed, depth of cut and workpiece material,
or in the most general form:

0, = K. Fvya (11)

According to Refs. [1], [2], [5], [6] and [I2], r =1 and x ranges from 0.4 ag;i
0.5, i. e. an average of x = 0.45. The power y is variously given as —0.78!!7, —0.5!¢,
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—=0.551121 and as dependent on vi2); jtg average was calculated as —0.55. The
value of z also varies between the sources, and its average was calculated as —0.95.
The formula thus becomes:

00 — KTVO.4SS—O.550-O.95F . (lz)l

A typical value of Ky (with F given in kp, v in m/min, s in mm per revolution, g in
mm and 0, in degrees Centigrade)'is 0.5.

WEAR LAND

The wear characteristic comprises three stages:

I An initial stage with high wear rate, relatively short compared with tool life.
2. A near-lincar stage,

3. A final high-rate stage, representing tool failure.,

Tool wear was affected by three principal mechanisms: adhesion, abrasion and
diffusion,

subsequent destruction. When destruction is by shear below the interface, a wear
particle is shifted. This mechanism js confined to low cutting temperatures! '),
and is thus without interest jn the present discussion.

Abrasion, or removal of asperitics of one surface by the material of the other,
is proportional to the stress on the tool. At the beginning, the contact area between
workpicce and tool s small, so that the stress is high and the wear is intensified
accordingly, until after a certain time both the contact area and stress become
constant. This interval js inversely proportional to the cutting speed. (The abrasion
wear (By) continucs to increase slowly throughout the cutting process due to the
increase in the force, as explained later.)

By the above considerations, the direct effect of the cutting force on the wear

is confined to the initial stage, and the following differential equation may be assumed
as valid : '

. F"

B+ t,Bp = Ky o (13)

where F, is the normal force and t, =/ /v.

From Merchant’s model it is known that:
F,,=Fcosy—Fsiny,,chosy (14)
whence
E +£l}.=K cosr—F—— (15)
F v F F s a

where the length constant /, is about 300 to 700 meters and the order of magnitude
of Ky is 5 x 10™* mm?/kpt™,

As for diffusion, its rate is an exponential function of temperature; at the same
time, the corresponding rate of material transport varies as the square root of the
cutting specd (sec App. I), so that the wear rate due to diffusion is:

By = Kp\/v exp (— AJ0°K) (16)
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where Kp and A arc constants depending on the types of carbide and steel. In the
example shown in Fig. 2 (depth of diffusion vs. temperature) the curve 1, =
= 110 exp(—10 000/0"K) corresponds to experimental resuits drawn from Ref. [10].

Lo {mm]
0@~
PI0~CK53(A1S! C 1050) Co—=Fe
002}~
110 exp (-10000/6 °K )
0011—
ol gy 1 ') ! !
0 600 700 800 %00 @([°C’

Figure 2 Depth of diffusion vs. temperature.
P-10 carbide: AISI-C 1050 stell

FORCE VS. WEAR

According to Ref. [8], we have for carbide tool machining of steel:
F=F,+C,B (7

This formula was confirmed by lincar regression, with correlation coefficients
exceeding 0.9: C,, as found from Fig. 3 in the above reference, is 50 kp/mm? for
0.45%; carbon steel, a P-20 carbide tool and 0.2 mm/rev. feed.

According to Ref. [2], the cutting force comprises two components:

F=F,+ F (18)
with the force increment due to the wear given by:
F' =q'p(alsin ¢ + rtan ¢/2 +5) - B (19)

where r — radius of cutting tool corner; ¢ — main cutting adge angle; jt — coef-
ficient of friction, ¢' — specific normal load on clearance face.
Figs. 322 and 329 in Ref. [2] (stecl and carbide-tool data) show that p increases

and ¢q" decreases (both slightly) with dccreasing a, so that the product q’'u may be
taken as canstant.

Defining:
C,=q'nfsin ¢ (20)
and taking the average ¢ as 45°, we obtain:
F'=CJa+03r+0.7s): B 21

i.e. eq. (17) is theoretically justified for a>1 mm, r <0.5 mm, a > 7s. An average
value for C,, according to Ref. [2] is 30 kp/mm?2.

Further confiirmation of eq. (17), from a different point of view, is given in
Ref. [9].
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MATHEMATICAL MODEL

Egs. (9), (10), (12) and (15)—(17) yiclded the block diagram of the mathematical

model as shown in Fig. 3, with a noise gencerator incorporated to represent in-
homogencity of the work piece.

Kr cos 2/sa B¢

14 pr,

n(t)

Aé:»«:f
|
L.

Krv! gragr @° A
Tepra ol ern - 5 s

|2

e Coa e

Figure 3. Block diagram of model

The model was simulated on a computer for the following data:

CAl — Cy) =200 C,.=30
Kpcosy=510-1 u=0.76
C.=0.01 xr =045
¢=0.5 = —(0.55
KNy =0.55 = -0.95
K,=20 .=0(s00=0,)

A =10.000 1, =500

Fig. 4 gives the wear plotted against time, with the Speed as parameter (range
70 --180 m/min), 5 = 0.25 mm/rev., @ = 2.5 mm. Simulation results are seen to agree

8 (mm]
o

09t

08

o7}

n 1 i 1 A i 1 " 1
0 10 20 30 40 50 60 70 &0 80 100 ¢Lmini
Figure 4. Wear cuives — computer simulation
S 025 mmfrev;a 2.5 mm
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with practicai curves, 1f the bonld 27 S toof fife is set at 0.75 mm wear, its corte-
sponding value is 60 mimn at g speea of 100 m/min.
Fig. 5 shows the time dependence of the abrasion and diffusion components,

By and B,,. The former js scen to predominate in the carly stages, and the latter
in the final stages.

P B ,Bp.Br [mm]}

oee o L ] | |
0 10 20 30 40 ttminJ

Figure 5. Dilfusion and adrasion wear vs. cutting time

For a wear fand of 0.75 mm, cutting speed (Fig. 6u), feed (Fig. 6b) and depth
of cut (Fig. 6¢) were plotted against tool life in a logarithmic scale, yielding straight
lines, as is the case in practice. The lincs in Fig. 6a have almost the same slope.
corresponding to the formula -

P T C, 22)

known as Taylor's cquation.
The lines in Fig. 6b are also almost parallel, and we obtain:

, s'"Mr=c, (23)
From Fig. 6¢ it is scen that:
¢ a®?iT =, (24)

Bearing in mind that the cutting speed for 60 minutes tool life is 100 m/min,
egs. (22), (23). (24) yicld the equation:

I’SO'J"(I("O'UTO‘J'S =242 (25)

The exponent of 7 decreases with increasing A4, while the constant on the right-
-hand side of cq. (25) increases with decrcasing K,

133



f T tmin)
100

a=25mm

50 70 100 200 360 500 V[#]IJ;]

AT tminJ
90 |-
70—~

B 00:29“ T=c
50
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] | | -
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Figure 6. Tool life V. cutting speed](a), feed (b), depth of cut (©)

PARTIAL LINEARIZATION OF MODEL

The section deals with lincarization of exponent:

exp [—A/QT3+0)) =M + NO (26)
where
M =[1 - A40,/(275 + 0, exp [— A4/(273 + 0] (02))]
N=[A/273 + 0,*) exp [~ A4/(273 + 0,)] 28)
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The linecar model is shown in Fig. 7, where _ 7
F,=F,+ mAF (29)
where AF = B,C a and m < 0.5.
mAF supplements force F,, as the latter increases during the cutting process,
and should be brought 1o an average working point on the exponential curve.
Defining
K' = KTVO.‘)SS—O.SSG—O.95NKD
Kz s KT‘,O.‘)SS—O.SSG-0.95MKD/00
Ky = Kel(s - a)
C.=C.u
7, (1, .~ O),

we obtain, after Laplace-transformation

045
Kr v& 8, M
- I o _’Ka VV

" T 7 so%saas

Ke/sa
! +pr

£ [..__ _F_
' Q@

| Krvoss | o
3055 9095 g NKDF

Figure 7. Block diagram of linear model

p’t+ pll — (K; + K,0)C,] - K,C,

B(p) =

since F, is constant, we have:
FI
F(p)=-= an
p) >
and finally, defining
b=(K:+ K,7)C,
d=[(1 - b)* +4K,C,1]*

e=K,/K,

l(d+h—-|)
T

23
[

(d=b+1)

Ty 2t

D=-2'—l[l +b—d—e(—1+b+d—2K,C,0)]
(

C= 7_'1[1 +b+d+e(l—b+d+2K,Cl1)
P4 ¢
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we obtain after inverse Laplace transformation :
,‘.'I
B(1) = E’_ [=( +¢)+ Cexp (t/r,) - Dexp (~1/t,)] (32)
it being obvious that f) >0 (see Appendix I1),

A numerical calculation shows that for v = 100 m/min and .5 =
7y is about 70 min, and 1, about 5 min,

Itis seen that the wear diagram in the first and second slagés comprises three
curves, the interval taken as linear being in fact exponential with a relatively large
time constant. I js also seen that assumption of <1 in eq.(32) yields cq. (3),
shown by Miiller to be good approximation to a practical curve. (From ¢q. (32):
for 1=0, B.:0, so: D=C~(1 +¢)) In addition, two practical diagrams were

taken from Ref, [S] and mathematical cquitions of the type of eq. (32) fitted to
them (sec Fig. 8).

0.25 mm/rev

(1) B2 6exp(2107L)~0,2eap (=107 ) - 5,8
(2 8355e1p()07L J~ 0 exp (=107 )~52

S S e ——

o 7 mgs T 2006 3406 L {mm ]
Figura 8. Measured and caleulated wear curves

CX(AA) carbide; AISI 4340 steel
50,0002 ipr; a - 0,5 mm

A lincar model with the numerical values given in the preceding section and '
m=0.17, was simulated on a computer. Table | lists some constants for €q. (32).
(The constants are multiplied by £/C..)

Table 1. - - Results of lincar model simulation
No.  v[m/min) simmfrev]) (1 j-e) C D I/z, Iz,
l 100 0.1 0.110 0.2064 0.154 0.006 0.171
2 100 0.25 0.274 0.395 0.120 0.016 0.189
3 100 0.5 0.525 0.625 0.096 0.029 0.195
4 180 0.5 0.602 0.672 0.070 0.183 0.353

In all cases a = 2.5 mm.

Table | and Fig. 8 show that the constants vary as follows with the speed :
. 1/t, increases as the power in Taylor s equation, v"T = C,.

2. 1z, increases lincarly.

3. D decercases, while € and (! + ¢) increase.
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CONCLUSIONS

A mathematical model was developed for stel turning with a carbide tool
and verified on practical wear-time curves taken with the cutting speed as parameter.

The model also yiclded the (ool lifc as function of the cutting speed, feed and
depth of cut, which in (urn lead to Taylor's equation,

Lincarnzaton vielded results close to those of the original model, and provided
a formula for the time behavior of the tool wear. This formula permits prediction
ot tool life in the course of optimization of the cutting process.
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APPENDIX |
DERIVATION OF DIFIFUSION LQUATION

The cquation o transport by molecular dilfusion between two materials at
constant density is:

(ﬂ/tl +pVeov 4+ Vpov= DV 4 r (I-1)
where
D = diflusion cocflicient,
/= mass density,
v = mass velocity,
r = rate of inner production.



