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Computational Stability Analysis 
of Chatter in Turning 
Machine tool chatter is one of the major constraints that limits productivity of the 
turning process. It is a self-excited vibration that is mainly caused by the interaction 
between the machine-tool/workpiece structure and the cutting process dynamics. 
This work introduces a general method which avoids lengthy algebraic (symbolic) 
manipulations in deriving, a characteristic equation. The solution scheme is simple 
and robust since the characteristic equation is numerically formulated as a single 
variable equation whose variable is well bounded rather than two nonlinear algebraic 
equations with unbounded variables. An asymptotic stability index is also introduced 
for a relative stability analysis. The method can be applied to other machining 
processes, as long as the system equations can be expressed as a set of linear time 
invariant difference-differential equations. 

1 Introduction 

Machine tool chatter is one of the major constraints that limits 
productivity of the turning process. It is a self-excited vibration 
that is mainly caused by the interaction between the machine-
tool/workpiece structure and the cutting process dynamics. In 
addition to the steady cutting force in turning, there are also 
other small force disturbances in the cutting force due to the 
chip breakage, interference from continuous chips, or hard spots 
on the workpiece. Such disturbances make the machine-tool/ 
workpiece structure respond with a change in the relative dis­
placement between the cutting tool and the workpiece. This 
change leads to a variation in the cutting parameters (e.g., chip 
thickness) and, therefore, again affects the resultant cutting 
force. Consequently, the interaction between the machine-tool/ 
workpiece structure and the cutting process dynamics can be 
described as a closed loop system. Chatter occurs when this 
closed loop system becomes unstable. From the energy perspec­
tive, chatter occurs when the energy from the machine spindle 
drive is not completely consumed by the structural damping 
and the cutting friction. Chatter leads to poor surface finish 
and dimensional accuracy in the machined part, fast wear and 
breakage of the cutting tool, and even severe damage to the 
machine tool. 

From the process planning point of view, a stability chart 
(e.g., Fig. 1) is usually constructed by experiment or theoretical 
prediction in order to select appropriate cutting parameters with­
out causing chatter problems. In the chart, the stability limit 
(e.g., limit of width of cut in orthogonal cutting) is generally 
a function of feed, cutting speed, and spindle speed [Minis, 
1990]. When the feed and the cutting speed are given, the 
stability limit can be plotted as a function of spindle speed, i.e., 
the lobed borderline. Furthermore, the lowest stability limit for 
given feed and cutting speed is defined as the asymptotic border­
line (Merrit, 1965), which is independent of the spindle speed. 
The asymptotic borderlines with respect to different cutting 
speeds then form a tangent plane. When the tangent plane is 
subject to a constant workpiece radius, there results a constraint 
that the cutting speed is proportional to the spindle speed. Even­
tually, the constraint on the tangent plane forms a tangent bor­
derline (Wu, 1985). 

Many methods have been developed to predict the onset of 
chatter. Based on a specific expression in the cutting process, 
Tobias et al. (1965) developed a graphical method and an alge­

braic method to determine the onset of instability of a system 
with multiple degrees of freedom. Merrit (1965) assumed no 
dynamics in the cutting process and developed a theory to calcu­
late the stability boundary by plotting the harmonic solutions 
of the system characteristic equation on a special chart. He 
also proposed a simple asymptotic stability criterion to assure 
chatter-free performance at all spindle speeds. Opitz and Ber-
nardi (1970) developed a general closed loop representation 
of the cutting system dynamics for both turning and milling 
processes. The machine structural dynamics was generally ex­
pressed in terms of transfer matrices, while the cutting process 
was limited by two assumptions: (1) the direction of the dy­
namic cutting force is fixed during dynamic cutting, and (2) 
the effect of feed and cutting speed are neglected. These as­
sumptions were later removed by Minis et al. (1990). They 
described the system stability by a characteristic equation, and 
then applied the Nyquist stability criterion to determine the 
system stability boundaries. 

This work introduces a general computational method which 
avoids lengthy algebraic (symbolic) manipulations in deriving 
a characteristic equation. Since the characteristic equation is 
numerically formulated as an equation in a single unknown 
variable which is well bounded (rather than two nonlinear alge­
braic equations with unbounded variables), the solution scheme 
is simple and robust. An asymptotic stability index is also intro­
duced for the purpose of relative stability analysis. Two exam­
ples are provided to demonstrate the proposed method. 

2 Mathematical Formulation 
In order to predict the onset of chatter, the chatter model is 

usually linearized about an equilibrium point (i.e., a steady 
cutting condition). Then the linearized model can be expressed 
by a set of linear time invariant differential equations with 
time delays (i.e., time difference-differential equations) (Minis, 
1990). Therefore, the mathematical formulation starts from a 
system of linear time difference-differential equations expressed 
in terms of the state space form, i.e., 

— = A ( x ( 0 + A2x(f 
dt 

T), (1) 
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where T is the time needed for one revolution (i.e., the inverse 
of the spindle speed), Ai and A2 are the linearized equation 
matrices of the process model, and are functions of the machine-
tool/workpiece structural parameters (e.g., natural frequency, 
damping, and stiffness), of the cutting parameters (feed, speed, 
and depth of cut), and of the cutting coefficients (e.g., cutting 
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Fig. 1 Typical stability chart for 1-DOF models in orthogonal cutting 

stiffness). Now, based on Eq. (1) , new algorithms are proposed 
to calculate the stability boundary and also to provide an asymp­
totic stability index for relative stability analysis. Instead of 
solving two simultaneous nonlinear algebraic equations as in 
previous studies [Chiriacescu, 1990], the stability chart is con­
structed by solving one single-variable equation whose variable 
is well bounded. First assume a sinusoidal solution for Eq. (1). 
For a nontrivial solution, one obtains 

det(( j / I - A! - e~TujA2) = 0 (2) 

Equation (2) is defined as the characteristic equation of Eq. 
(1) and is usually used for calculating the stability boundaries. 
In fact, Eq. (2) is given in an alternative form in many previous 
works. With further symbolic manipulations, the characteristic 
equation has been used for chatter prediction by applying the 
Nyquist stability criterion (Minis, 1990). However, in order to 
avoid unnecessary symbolic manipulations, Eq. (2) is utilized 
here without any further symbolic manipulation. Since the term 
e~T"' in Eq. (2) is of unit magnitude, the following definition 
is given: 

Definition 1 
2-K(m + v) = TUJ, where m is a natural number, and the 

variable v is well bounded, i.e., 0 s v < 1. 
After replacing the term Tui with 2ir (m + v), the unbounded 

variable Tin Eq. (2) can be replaced by a well bounded variable 
v. That is, 

det (w/'I - Ae(u)) = 0, 0 =s u < 1, (3) 

where Ae(v) = Aj + e~l1"'1 hi, and u> is the chatter frequency. 
Traditionally Eq. (3) is solved by taking both the real and 

imaginary parts to be zero, i.e., by solving two nonlinear simul­
taneous equations with respect to two independent variables to 
and D (Chiriacescu, 1990). However, since u> is not well 
bounded, care must be taken to define the appropriate domain 
of u> in searching for numerical solutions. The chatter frequency 
to is closely related to the system's fundamental vibration 
modes. Therefore, the appropriate selection of the domain of ui 
is a case-by-case problem. In order to avoid such a drawback, 
a different approach is proposed. Consider the following equa­
tion: 

det (XI - Ae(v)) = 0, 0 < u < 1, (4) 

where X. is a complex variable. Note that X. does not have to be 
a purely imaginary number. For a given parameter v, solving 
for the variable X is equivalent to solving for the eigenvalues 
of the matrix Ae(u). When the solution X is located on the 
positive imaginary axis, the magnitude of X and its correspond­
ing v become a solution of Eq. (3). This motivates the proposed 

new scheme for stability analysis. The main idea of the proposed 
algorithm is to look for all the u's in 0 =s v < 1 that induce 
eigenvalue(s) on the positive imaginary axis for Ac(v). First, 
in order to detect if X is an imaginary number, a function of v, 
gap(u), is defined to be the real part of the eigenvalue of Ae(v) 
that has the shortest distance to the imaginary axis, i.e., 

Definition 2 
gap (u) = minx,(|Re(X,)|), where \,-'s are all the eigenval­

ues of Ae(u). 
Therefore, if gap (v) is zero for a specified v,Ae(v) has imagi­

nary eigenvalue(s), and vice versa. It is also claimed that all 
the v's in 0 s u <1 leading to eigenvalue(s) on the positive 
imaginary axis in Ae(u) can be determined by all the u's in 0 
=s v < 0.5 leading to imaginary eigenvalue(s) in Ae(u). Since 
the scalar e^2iwl is the complex conjugate of e~2wil~v)1, the 
matrix Ae(u) is, by definition, a complex conjugate of A e( l -
v). For each v in 0.5 s v < 1 that leads to eigenvalue(s) on 
the positive imaginary axis in Ac(v), there is a corresponding 
w ( = 1 - u ) i n 0 < w < 0 . 5 that leads to eigenvalue(s) on the 
negative imaginary axis in Ae(w). In this way, the problem of 
solving Eq. (3) can be converted into a problem of solving a 
single variable equation: 

gap (v) = 0, 0 0.5 (5) 

After solving Eq. (5) , the solution v's obtained are used as 
parameters to determine the corresponding chatter frequencies 
and spindle speeds. The chatter frequency u> is equivalent to 
the magnitude of the imaginary solution in Eq. (4), i.e., 
Im(X)'s. Also, by definition and from the above discussion, the 
spindle speed is expressed as 

1 

T 

Im(X) 

(m + t))27r ' 

- I m ( \ ) 

(m + 1 — v)2n 

Im(X) s 0, 

Im(X) < 0. (6) 

where m is any natural number, and Im(X) is also a function 
of v. 

3 Computational Stability Analysis 
The proposed mathematical formulation is rather convenient 

for computational chatter prediction. Once the system matrices 
Aj and A2 are given, a computer program can take care of the 
rest of the tasks. Lengthy algebraic (symbolic) manipulations 
in deriving a characteristic equation are also avoided. In order 
to demonstrate the use of Eq. (5) , (6), two simple examples 
from the work of Merrit [1965] are given. The first example is 
a one degree-of-freedom dynamic system, and the second exam­
ple is a three degree-of-freedom dynamic system. Figure 2 
shows the block diagram of the chatter loop. When the dynamics 
of the cutting process is neglected, the structural dynamics, for 
one or multiple degree (s) of freedom, can be expressed in terms 
of the structure in Fig. 2. 

In the first example, 

Ho(s) 

cutting process structural dynamics 
dynamics 

+ „ "(s) F(s) 
GJs) 

y(s) 

primary feedback path 

regenerative feedback path 
Me •Ts 

time delay 

Fig. 2 Block diagram of chatter loop [Merrit, 1965] 
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Fig. 3 Typical sketch of the function gap(v) for one degree-of-freedom 
models Fig. 5 Typical sketch of the function gap (v) for multiple degree-of-free­

dom models 

G„,(s) = 
1 

1 2 2£ 
— ,?2 + -2-.S + 1 

w„ 

where 

ui„: natural frequency of structure (rad/sec), 
£: damping ratio of structure, = 0.05, 
km: structural stiffness (N/m), 
kc: cutting stiffness (N/m), 
T: time for one revolution (sec), 
u: overlapping factor, = 1. 

The corresponding time difference-differential equation is ex­
pressed as 

1 2C 
—rX + —- X + X = (x(0 - fj,x(t - T)). 

If one defines the state vector x = 

in Eq. (1) can be expressed as 

Ai = 

the system matrices 

0 1 0 0 

- (1+l)" : -2£,u>„ , A2 = 

km 

When the stiffness ratio, (kc/k,„), is specified, the correspond­
ing solution of Eq. (6) can be evaluated. Figure 3 shows the 
typical shape of the gap(u) function for one degree-of-freedom 
models. There are two solutions to gap(u) = 0 for a given 
stiffness ratio in this sketch. In the first example, the value of 

T 

unstable region — lobed 
borderline 

j / stable region 

/ 
/ 

y x
x asymptotic borderline 

, / ^ ^ 
IB 28 38 48 58 68 78 88 98 

spindle speed (r-ps) 

Fig. 4 Typical stability chart for one degree-of-freedom models 

stiffness ratio is gradually increased from 0 to 0.6 with a step 
change 0.01. Then the stability chart, i.e., the stability boundary 
with respect to the spindle speed (rps, revolutions per second), 
is depicted in Fig. 4, where m is chosen to be 0, 1, and 2. When 
the given stiffness ratio is smaller than 0.1, there is no solution 
to gap(u) = 0; when the stiffness ratio is 0.1, there is one 
solution; when the stiffness ratio is greater than 0.1, there are 
two solutions, which is the case in Fig. 3. 

In the second example, a three degree-of-freedom model is 
utilized. In this case, 

G„(s) 
• + & , + l +&s + l 

CJ3 

w h e r e ujb, C,b, w , , t,x, u>2, C2. w3> a n d Cs a r e assigned the values 
100 Hz, 0.05, 30 Hz, 0.05, 70 Hz, 0.005, 150 Hz, and 0.01 
respectively. Figure 5 shows the typical shape of the gap(i>) 
function for multiple degree-of-freedom models. There are four 
solutions for gap (u) = 0 in this sketch. Similarly, after obtaining 
all the solutions of Eq. (5) for given stiffness ratios from 0 to 
0.8, the stability chart is plotted in Fig. 6, where m is chosen 
to be 0, 1, and 2. The stability boundary, i.e., the maximal 
stiffness ratio for chatter-free cutting, is sketched with respect 
to spindle speed (rps). 

Based on the definition of the function gap(u), an asymptotic 
stability index, Max (gap (u)), which is the largest value of 
gap(u) over v in 0 < v < 0.5, is now defined to indicate the 

uruUbta region 

„ / ' 

J* atible region 

asymptotic bardorline 

stable region 

l f l * I B 3 

s p l n d l o ayoftd <rps> 

Fig. 6 Typical stability chart for multiple degree-of-freedom models 
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stability margin. When Max (gap (u)) is smaller than zero, 
there is no solution for the stability boundary, which implies 
that the process is under the tangent borderline, (e.g., see Figs. 
5 and 6). As Max (gap (u)) approaches zero, the specified 
process also approaches the tangent borderline. When Max 
(gap («)) is greater than zero, the process is above the tangent 
borderline, which indicates the possibility of chatter at certain 
spindle speeds [Merrit, 1965]. 

4 Summary and Conclusions 

A general method has been proposed for absolute and relative 
stability analysis against machine-tool chatter: 

(1) Lengthy algebraic (symbolic) manipulations in deriv­
ing a characteristic equation are avoided. Only the sys­
tem matrices are needed for the computation of the 
stability boundary. Thus the efficiency in formulating 
machine tool chatter problems is significantly im­
proved. A case-independent solver can be developed 
based on the proposed algorithm to compute the stabil­
ity chart. 

(2) The computational scheme is robust since the stability 
onset calculation is simplified to solving a single vari­
able equation whose variable is well bounded. 

(3) An asymptotic stability index is proposed to indicate 
the stability margin. 

(4) The method can also be applied to other machining 
processes, as long as the system equations can be ex­
pressed as a set of linear time invariant difference-
differential equation. 
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