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Machine tool chatter is one of the major constraints that limits productivity of the

turning process. It is a self-excited vibration that is mainly caused by the interaction

Y. Koren

between the machine-tool/workpiece structure and the cutting process dynamics.
This work introduces a general method which avoids lengthy algebraic (symbolic)

manipulations in deriving, a characteristic equation. The solution scheme is simple
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and robust since the characteristic equation is numerically formulated as a single
variable equation whose variable is well bounded rather than two nonlinear algebraic
equations with unbounded variables. An asymptotic stability index is also introduced

for a relative stability analysis. The method can be applied to other machining
processes, as long as the system equations can be expressed as a set of linear time
invariant difference-differential equations.

1 Introduction

Machine tool chatter is one of the major constraints that limits
productivity of the turning process. It is a self-excited vibration
that is mainly caused by the interaction between the machine-
tool/workpiece structure and the cutting process dynamics. In
addition to the steady cutting force in turning, there are also
other small force disturbances in the cutting force due to the
chip breakage, interference from continuous chips, or hard spots
on the workpiece. Such disturbances make the machine-tool/
workpiece structure respond with a change in the relative dis-
placement between the cutting tool and the workpiece. This
change leads to a variation in the cutting parameters (e.g., chip
thickness) and, therefore, again affects the resultant cutting
force. Consequently, the interaction between the machine-tool/
workpiece structure and the cutting process dynamics can be
described as a closed loop system. Chatter occurs when this
closed loop system becomes unstable. From the energy perspec-
tive, chatter occurs when the energy from the machine spindle
drive is not completely consumed by the structural damping
and the cutting friction. Chatter leads to poor surface finish
and dimensional accuracy in the machined part, fast wear and
breakage of the cutting tool, and even severe damage to the
machine tool.

From the process planning point of view, a stability chart
(e.g., Fig. 1) is usually constructed by experiment or theoretical
prediction in order to select appropriate cutting parameters with-
out causing chatter problems. In the chart, the stability limit
(e.g., limit of width of cut in orthogonal cutting) is generally
a function of feed, cutting speed, and spindle speed [Minis,
1990]. When the feed and the cutting speed are given, the
stability limit can be plotted as a function of spindle speed, i.e.,
the lobed borderline. Furthermore, the lowest stability limit for
given feed and cutting speed is defined as the asymptotic border-
line (Merrit, 1965), which is independent of the spindle speed.
The asymptotic borderlines with respect to different cutting
speeds then form a tangent plane. When the tangent plane is
subject to a constant workpiece radius, there results a constraint
that the cutting speed is proportional to the spindie speed. Even-
tually, the constraint on the tangent plane forms a tangent bor-
derline (Wu, 1985).

Many methods have been developed to predict the onset of
chatter. Based on a specific expression in the cutting process,
Tobias et al. (1965) developed a graphical method and an alge-
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braic method to determine the onset of instability of a system
with muitiple degrees of freedom. Merrit (1965) assumed no
dynamics in the cutting process and developed a theory to calcu-
late the stability boundary by plotting the harmonic solutions
of the system characteristic equation on a special chart. He
also proposed a simple asymptotic stability criterion to assure
chatter-free performance at all spindle speeds. Opitz and Ber-
nardi (1970) developed a general closed loop representation
of the cutting system dynamics for both turning and milling
processes. The machine structural dynamics was generally ex-
pressed in terms of transfer matrices, while the cutting process
was limited by two assumptions: (1) the direction of the dy-
namic cutting force is fixed during dynamic cutting, and (2)
the effect of feed and cutting speed are neglected. These as-
sumptions were later removed by Minis et al. (1990). They
described the system stability by a characteristic equation, and
then applied the Nyquist stability criterion to determine the
system stability boundaries.

This work introduces a general computational method which
avoids lengthy algebraic (symbolic) manipulations in deriving
a characteristic equation. Since the characteristic equation is
numerically formulated as an equation in a single unknown
variable which is well bounded (rather than two nonlinear alge-
braic equations with unbounded variables ), the solution scheme
is simple and robust. An asymptotic stability index is also intro-
duced for the purpose of relative stability analysis. Two exam-
ples are provided to demonstrate the proposed method.

2 Mathematical Formulation

In order to predict the onset of chatter, the chatter model is
usually linearized about an equilibrium point (i.e., a steady
cutting condition). Then the linearized model can be expressed
by a set of linear time invariant differential equations with
time delays (i.e., time difference-differential equations) (Minis,
1990). Therefore, the mathematical formulation starts from a
system of linear time difference-differential equations expressed
in terms of the state space form, i.e.,

& _

i = Alx(t) + AzX(l’ - T),

()

where T is the time needed for one revolution (i.e., the inverse
of the spindle speed), A; and A, are the linearized equation
matrices of the process model, and are functions of the machine-
tool/workpiece structural parameters (e.g., natural frequency,
damping, and stiffness), of the cutting parameters (feed, speed,
and depth of cut), and of the cutting coefficients (e.g., cutting
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Fig. 1 Typical stability chart for 1-DOF models in orthogonal cutting

stiffness ). Now, based on Eq. (1), new algorithms are proposed
to calculate the stability boundary and also to provide an asymp-
totic stability index for relative stability analysis. Instead of
solving two simultaneous nonlinear algebraic equations as in
previous studies [ Chiriacescu, 1990], the stability chart is con-
structed by solving one single-variable equation whose variable
is well bounded. First assume a sinusoidal solution for Eq. (1).
For a nontrivial solution, one obtains

det (wjl — Ay — e ™A) =0 (2)

Equation (2) is defined as the characteristic equation of Eq.
(1) and is usually used for calculating the stability boundaries.
In fact, Eq. (2) is given in an alternative form in many previous
works. With further symbolic manipulations, the characteristic
equation has been used for chatter prediction by applying the
Nyquist stability criterion (Minis, 1990). However, in order to
avoid unnecessary symbolic manipulations, Eq. (2) is utilized
here without any further symbolic manipulation. Since the term
¢~™ in Eq. (2) is of unit magnitude, the following definition
is given:

Definition 1

2w(m + v) = Tw, where m is a natural number, and the
variable v is well bounded, ie., 0 = v < 1.

After replacing the term Tw with 27 (m + v), the unbounded
variable T in Eq. (2) can be replaced by a well bounded variable
v. That is,

det (wjl — A(v)) =0, O=v<1, (3)

where A (V) = A, + e *™/A,, and w is the chatter frequency.

Traditionally Eq. (3) is solved by taking both the real and
imaginary parts to be zero, i.e., by solving two nonlinear simul-
taneous equations with respect to two independent variables w
and v (Chiriacescu, 1990). However, since w is not well
bounded, care must be taken to define the appropriate domain
of w in searching for numerical solutions. The chatter frequency
w is closely related to the system’s fundamental vibration
modes. Therefore, the appropriate selection of the domain of w
is a case-by-case problem. In order to avoid such a drawback,
a different approach is proposed. Consider the following equa-
tion:

det (N — A,(v)) =0, 0=v<1, (4)

where A is a complex variable. Note that A does not have to be
a purely imaginary number. For a given parameter v, solving
for the variable \ is equivalent to solving for the eigenvalues
of the matrix A.(v). When the solution \ is located on the
positive imaginary axis, the magnitude of A and its correspond-
ing v become a solution of Eq. (3). This motivates the proposed
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new scheme for stability analysis. The main idea of the proposed
algorithm is to look for all the v’s in 0 = v < 1 that induce
eigenvalue(s) on the positive imaginary axis for A,(v). First,
in order to detect if A is an imaginary number, a function of v,
gap(v), is defined to be the real part of the eigenvalue of A.(v)
that has the shortest distance to the imaginary axis, i.e.,

Definition 2

gap (v) = min, (|Re(\;)]), where \;’s are all the eigenval-
ues of A.(v).

Therefore, if gap(v) is zero for a specified v, A.(v) has imagi-
nary eigenvalue(s), and vice versa. It is also claimed that all
the v's in 0 = v <1 leading to eigenvalue(s) on the positive
imaginary axis in A.(v) can be determined by all the v’s in O
= v = 0.5 leading to imaginary eigenvalue(s) in A.(v). Since
the scalar ¢ *™/ is the complex conjugate of e *™!™*/ the
matrix A.(v) is, by definition, a complex conjugate of A.(1 —
v). For each v in 0.5 = v < 1 that leads to eigenvalue(s) on
the positive imaginary axis in A.(v), there is a corresponding
w (=1 —-1v)in 0 < w = 0.5 that leads to eigenvalue(s) on the
negative imaginary axis in A.(w). In this way, the problem of
solving Eq. (3) can be converted into a problem of solving a
single variable equation:

(5)

After solving Eq. (5), the solution v’s obtained are used as
parameters to determine the corresponding chatter frequencies
and spindle speeds. The chatter frequency w is equivalent to
the magnitude of the imaginary solution in Eq. (4), ie.,
Im(A)’s. Also, by definition and from the above discussion, the
spindle speed is expressed as

gap (V) =0, 0=v=05

1 Im() _
Tt mM=0
—ImM) oo <o, (6)

=(m+1—v)27r

where m is any natural number, and Im(\) is also a function
of v.

3 Computational Stability Analysis

The proposed mathematical formulation is rather convenient
for computational chatter prediction. Once the system matrices
A; and A, are given, a computer program can take care of the
rest of the tasks. Lengthy algebraic (symbolic) manipulations
in deriving a characteristic equation are also avoided. In order
to demonstrate the use of Eq. (5), (6), two simple examples
from the work of Merrit [1965] are given, The first example is
a one degree-of-freedom dynamic system, and the second exam-
ple is a three degree-of-freedom dynamic system. Figure 2
shows the block diagram of the chatter loop. When the dynamics
of the cutting process is neglected, the structural dynamics, for
one or multiple degree (s) of freedom, can be expressed in terms
of the structure in Fig. 2.

In the first example,

cutting process

structural dynamics

dynamics
u(s) Fly| £ (s) s
knl i L
primary feedback path
p ey
regenerative feedback path
time delay

Fig. 2 Block diagram of chatter loop [Merrit, 1965]
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Fig. 3 Typical sketch of the function gap(v) for one degree-of-freedom
models

1
Gu(s) = —————7—,
Lzs2 + gs + 1
wh Wy

where

w,: natural frequency of structure (rad/sec),

€:  damping ratio of structure, = 0.05,
k,: structural stiffness (N/m),

k.. cutting stiffness (N/m),

T. time for one revolution (sec),

u: overlapping factor, =1.

The corresponding time difference-differential equation is ex-
pressed as

25

k.
—1—2)'c'+—x+x= = — (x(t) — px(t — T)).
Wh k

Wp m

X .
If one defines the state vector x = [ } , the system matrices
x

in Eq. (1) can be expressed as

0 1 ‘ 0 0
Ar= —(l +£)w,2, =28w, Ay = “ﬁwz 0
] k. "

When the stiffness ratio, (k./k,,), is specified, the correspond-
ing solution of Eq. (6) can be evaluated. Figure 3 shows the
typical shape of the gap(v) function for one degree-of-freedom
models. There are two solutions to gap(v) = O for a given
stiffness ratio in this sketch. In the first example, the value of
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Fig. 4 Typical stability chart for one degree-of-freedom models
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Fig. 5 Typical sketch of the function gap(v) for muitipie degree-of-free-
dom models

stiffness ratio is gradually increased from O to 0.6 with a step
change 0.01. Then the stability chart, i.e., the stability boundary
with respect to the spindle speed (rps, revolutions per second),
is depicted in Fig. 4, where m is chosen to be 0, 1, and 2. When
the given stiffness ratio is smaller than 0.1, there is no solution
to gap(v) = 0; when the stiffness ratio is 0.1, there is one
solution; when the stiffness ratio is greater than 0.1, there are
two solutions, which is the case in Fig. 3.

In the second example, a three degree-of-freedom model is
utilized. In this case,

(Ls2+g§2s+1>

w? wy
G, (s) =
1 1 2i 1 2
<—2s2+2gs+ 1><—zsz+—&s+ 1)(—2s2+és+ 1)
Wy Wy w3 Wy w3 W3

where w;, &, wi, Ci, wa, &, ws, and {5 are assigned the values
100 Hz, 0.05, 30 Hz, 0.05, 70 Hz, 0.005, 150 Hz, and 0.01
respectively. Figure 5 shows the typical shape of the gap(v)
function for multiple degree-of-freedom models. There are four
solutions for gap (v) = O in this sketch. Similarly, after obtaining
all the solutions of Eq. (5) for given stiffness ratios from 0 to
0.8, the stability chart is plotted in Fig. 6, where m is chosen
to be 0, 1, and 2. The stability boundary, i.e., the maximal
stiffness ratio for chatter-free cutting, is sketched with respect
to spindle speed (rps).

Based on the definition of the function gap(v), an asymptotic
stability index, Max (gap (v)), which is the largest value of
gap(v) overvin 0 = v = 0.5, is now defined to indicate the
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Fig. 6 Typical stability chart for multiple degree-of-freedom models
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stability margin. When Max (gap (v)) is smaller than zero,
there is no solution for the stability boundary, which implies
that the process is under the tangent borderline, (e.g., see Figs.
5 and 6). As Max (gap (v)) approaches zero, the specified
process also approaches the tangent borderline. When Max
(gap (v)) is greater than zero, the process is above the tangent
borderline, which indicates the possibility of chatter at certain
spindle speeds [Merrit, 1965].

4 Summary and Conclusions

A general method has been proposed for absolute and relative
stability analysis against machine-tool chatter:

(1) Lengthy algebraic (symbolic) manipulations in deriv-
ing a characteristic equation are avoided. Only the sys-
tem matrices are needed for the computation of the
stability boundary. Thus the efficiency in formulating
machine tool chatter problems is significantly im-
proved. A case-independent solver can be developed
based on the proposed algorithm to compute the stabil-
ity chart.

The computational scheme is robust since the stability
onset calculation is simplified to solving a single vari-
able equation whose variable is well bounded.

(2)

(3) An asymptotic stability index is proposed to indicate

the stability margin.

(4) The method can also be applied to other machining
processes, as long as the system equations can be ex-
pressed as a set of linear time invariant difference-

* differential equation.
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