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Obstacle Accommodation Motion Planning 
Yansong Shan and Yoram Koren, Senior Member, IEEE 

Abstract-A new robot path planning methodology called ob- 
stacle accommodation has been introduced for robots in cluttered 
environments. This methodology does not attempt to avoid physi- 
cal contact between a robot and obstacles. Instead, it controls the 
contact to prevent damage to the robot. Obstacle accommodation 
represents a new robotic paradigm in which obstacles can contact 
robots at unspecified positions, i.e., a contact point can be at any 
point on any link. Obstacle accommodation requires analysis in 
kinematics, motion planning, dynamics, and control. This paper 
deals with the development of the kinematic constraints and with 
motion planning under these constraints. We begin by providing 
a general formulation of the motion constraints due to contact 
with obstacles. Next, a new inverse kinematics is presented 
that provides joint motion for robots under contact constraints. 
Finally, the new motion planning algorithm for robot motion 
in a cluttered environment is provided. The motion planning 
algorithm is verified by two examples, one on a linkage robot 
and the other on a mobile robot. 

I. INTRODUCTION 
S THE field of robotics has progressed, the environ- A mental conditions under which robots must operate have 

become more and more complicated. It has become clear 
that one of the key issues to improving and widening the 
applications of robots is the enhancement of the adaptability 
of robots to their working environments. Controlling robot 
motion in challenging environments, especially in obstacle- 
cluttered environments, has been addressed by many scientists 
and engineers since the 1960s. To date, two approaches to 
robot motion planning and control have been used for the 
situations in which a robot’s working environment must be 
considered. The first approach is obstacle avoidance, e.g., [3] 
and [lo], and the second is hybrid force/position control, e.g., 

Avoiding contact guarantees that no damage will occur 
to the robot and objects in its environment while in mo- 
tion. However, in many applications, avoidance creates many 
difficulties in robot motion control and path planning. In 
certain very cluttered environments, robot motion may be 
totally disabled (for example, it is unrealistic to require a 
person to go through jungles without touching “obstacles”). 
Contact or collision may also occur because of the imperfect 
performance of motion controllers, especially when passing 
through narrow spaces. Therefore, it is desirable (sometimes 
necessary) to consider the possibility of contact between a 
robot and obstacles in motion control. The advantage of taking 
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VI, V11, and 1221. 

contact into account can also be seen in cases in which the 
contact provides information about an environment, such as 
the shape and the “hardness” of the obstacle, i.e., whether it 
is a piece of grass or a large stone. 

The primary reason for obstacle avoidance is to avoid 
damage due to contact. However, contact is not necessar- 
ily dangerous to the robot as long as the contact can be 
controlled. A new motion control concept and methodology 
called obstacle accommodation has been proposed [ 191, [20]. 
This methodology allows contact between a robot and ob- 
stacles during motion, and controls the contact so that no 
damage occurs. This methodology is particularly useful in 
environments in which strict obstacle avoidance is difficult 
or impossible. Because true obstacles cannot be distinguished 
from soft objects by remote sensing, this methodology is 
essential in situations in which motion controllers do not have 
adequate knowledge of the true obstacles. For example, a piece 
of grass may be detected as an obstacle by range detectors 
such as ultrasonic sensors, and a robot may be unnecessarily 
controlled to avoid it. 

The hybrid force/position control considers the interaction 
between a robot and its environment, however, these stud- 
ies are based on a model in which the robot contacts its 
environment at its end-effector. 

This paper studies motion planning for obstacle accommo- 
dation. In obstacle accommodation, the task for path planning 
is to design the end-effector motion and to find the consequent 
joint motion that will allow a robot to achieve the motion 
target without violating motion constraints due to obstacles. 
Here, contact points between a robot and obstacles are un- 
specified in the sense that they can be at any position on 
any link. During the motion, the robot may move in free 
space (no contact with obstacles) in one period of time and 
contact obstacles in another period of time. The number 
of contacted obstacles may change as well. Therefore, the 
challenge for the path generator is to take into consideration 
the changes in contact properties when generating the motion 
path. This paper approaches motion planning through the 
following steps. 

First, it studies the formulation of constraints for obstacle ac- 
commodation. Two types of motion constraints are discussed: 
holonomic and the nonholonomic. 

Next, it studies the inverse kinematics for robots under 
these constraints. Since joint motion must satisfy the motion 
constraints, the inverse kinematics must consider the motion 
constraints in the solutions. This paper provides a new general 
inverse kinematic solution to find the joint motion for a 
robot that is in contact with obstacles at unspec$ed points 
on unspec$ed links. 
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Finally, this paper develops an algorithm to generate the 
robot motion path. The path planning algorithm is extended for 
a robot in an environment in which it might contact several 
obstacles simultaneously. 

This paper deals with the kinematics and motion planning 
issues of obstacle accommodation. One of the key problems 
involved in obstacle accommodation that is not discussed in 
this paper is the control of contact forces between the robot and 
obstacles. In real applications, contact forces may be caused by 
imperfect knowledge of the environment or any motion error. 
The contact forces might be very large if the motion constraints 
are improperly formed. We have conducted preliminary studies 
on controlling contact forces. From these studies, it is seen 
that, in general, the contact forces can be controlled at every 
contact point 1191, 1201. 

11. KINEMATIC CONSTRAINTS 

Obstacles in a robot's working area restrict its motion. 
Due to contact with obstacles, the motion of the robot is 
constrained, and the available motion space is reduced. In 
addition to the physical constraints due to contact with ob- 
stacles, some constraints may be made by the robot designer 
to further restrict motion. For example, once in contact with an 
obstacle, the relative motion between a robot and the obstacles 
might be required to be pure rolling to prevent wear damage 
due to sliding motion. This type of constraint generally is 
nonholonomic. This section provides a general method to 
formulate the constraints for obstacle accommodation. Some 
studies have been done on the motion constraints for robotic 
dexterous hand manipulation 141, [5], [7], [ 1 1 1  and for robot 
force control [2], [13], [21], [22]; however, the kinematic 
constraints discussed in this paper are due to obstacle contact 
with a robot at unspecified positions on unspecified links and 
due to multiobstacle contact. 

A.  Kinematic Descriptions of Linkages and Obstacles 

In this section, we present the kinematic descriptions of a 
robot linkage and the surfaces involved in contact. Without 
losing generality, suppose that link z (z = 1. . . . , n, where n is 
the number of links) is in contact with an obstacle, as shown in 
Fig. 1. In the analysis (and throughout this paper), we assume 
that the contact is a point contact and all the contact surfaces 
are rigid. Further, all the obstacles are assumed to be fixed 
with the world coordinate system. 

As shown in Fig. 1, we assign each joint of the linkage a 
coordinate system, 0,. The first joint coordinate system 00 is 
attached to the base of the robot, the next joint coordinate 01 
is attached to link 1 ,  so forth to the joint coordinate Or, which 
is attached to link 71. The joint coordinate system 0 0  is also 
assumed to coincide with the world coordinate system. 

Suppose the surface of link z is expressed in terms of 0, as 

2, = [ T , ( ? ~ T ,  ~ J T ) ,  ? ] Z ( ? ~ L ?  7)7), G ( ? ~ T ,  
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Fig. I .  A robot in contact with an obstacle. 

on the surface description.) We describe the contact point in 
terms of the world coordinate system as (see Appendix A) 

where Z,O is a description of the contact position in the 
world coordinate system, Rt and pb are rotational and linear 
transformation components in homogeneous transformation 
matrix from 0, to world coordinate system [6], 191. 

vectors which form a tangent plane to the surface (in some 
geometric textbooks these tangent vectors are referred to as 
velocity vectors [14]). Suppose the unit vectors along these 
two tangent vectors are denoted by tu, and t,,, then the unit 
outward normal vector of the surface at the point t,, is the 
crossproduct of these two vectors. Here, the subscript r means 
that these three vectors are expressed in terms of coordinate 
system 0,. We assume that the functions describing the link 
surfaces in 0, and the obstacle surfaces in Ob are at least 
first-order differentiable. The three vectors are shown in Fig. 
2. tu%. t,,, are given by 

1 

At the contact point, we can have two perpendicular tangent / / 

1 
t,,, = 

where .r,, y,, and z,  are the coordinates of any point on the 
surface of link 1 with respect to 0,, and U, and 71, are the and t,,,, is given by 

parameters of the surface. (See [14] for more detailed study t" I = tu, x t ,  z 
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link i f l  

Tb 

Fig. 2.  Coordinate systems on the contacted link and the obstacle 

In Fig. 2, if we assign a coordinate system Ob to the 
obstacle, then the surface of the obstacle can be expressed 
in terms of Ob as 

T 
2 6  = [ z b ( u b ,  u b ) ,  Y b ( u b ,  u b ) ,  z b ( U b ,  u b ) ]  . 

Any contact point on the obstacle surface can also be expressed 
in terms of the world coordinate system as (see Appendix A) 

(3) 2 6 0  = ROZb +Po 

where ZbO is a description of the contact position in the 
world coordinate system, R: and p t  are rotational and linear 
transformation components in homogeneous transformation 
matrix from Ob to world coordinate system. 

We can calculate the unit tangent vectors and outward 
normal of the obstacle surface at the contact point in the same 
way as for the link surface. Denoting t u b  and t u b  as the unit 
tangent vectors along the two tangent vectors (velocity vectors) 
and t u , b  as the unit outward normal vector to the obstacle 
surface, then 

t u b  = 

L b 

1 
2 /(7r)2+(T)2+(T-) a x h ( u h ,  u h )  a Y h ( u b r  " b )  a f h ( u h r  u h )  

ttrr6 = t 7 i b  x t u b .  (4c) 

In summary, (1) and (3) give the transformations of a point 
from 0, and Ob to 00 while (2) and (4) define the unit outward 

normal vectors of the contact surfaces. These equations will 
be used in developing the motion constraints. 

B. Holonomic Constraints 

In this section, we formulate the physical constraints on the 
robot motion that attempt to merge the material of two contact 
objects (obstacle and robot link) at the contact point. As will 
be seen later, the motion constraints are holonomic because 
they can be written in the form of 

c(e, U) = 0 

where C is an T x 1 vector, if T constraints are imposed on 
the robot motion (as will be seen later, 7' = 5 for a single 
contact point) 

is the joint variable vector, and 

U = [?I,,, ?Iz, ILL ,  ? lb IT  

is the contact surface parameter vector. 

formed into 00 by 
The unit outward normal of the link surface can be trans- 

tWZO = R&ll, = &(tu2 x t u % ) .  ( 5 )  

Similarly, the direction of the unit outward normal of the 
obstacle surface can be transformed into 00 by 

t w b O  = G t w b  = X t u b ) .  (6)  

Since at each contact point, these two outward normal vectors 
must lie on the same line but in opposite directions, i.e., 
twbO = - t w z O ,  we have 

(7) 

In addition to the constraint on the outward normal of the 
contact surfaces described in (7), we have another set of 
constraints based on the fact that the contact point on the 
link surface and on the obstacle surface coincide in the world 
coordinate system. Based on (1) and (3) we have 

@ ( t u b  x t u b )  = - & ( ~ u L  x t v i ) .  

Equations (7) and (8) give the constraints on the variables 
ui, i i i ,  l i b ,  and 'Ub as well as the linkage joint angles. In the 
equations, we have n + 4 unknowns: 8 j s  Q' = 1,.  . . , n), ui, 
u i ,  '&, and 'ub. Each side of (7) gives the projections of the 
outward normal vector onto the world coordinate system, since 
only two of projections are independent in R3 space, there are 
only two equations in (7) that are independent. In (8), we have 
three independent equations. So, (7) and (8) give a total of 5 
independent equations. 

Since (7) and (8) do not involve the time derivatives of 0,s 
and U, these two sets of equations can be rearranged into a 
standard holonomic constraint form 

N ( 8 ,  U) = 0. 
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Ideally, eliminating U!, v i ,  I & ,  and l i b  by the four equations 
in (7) and (8) and substituting them into the last independent 
equation, we can have a holonomic constraint equation on the 
joint variables 

N ( 8 )  = 0. 

Usually, it is difficult to eliminate surface parameters from 
(7) and (8) and to form a constraint that contains only the 
joint variables N ( 8 )  = 0. Therefore, in general, we are more 
concerned with the differential form of the constraints in the 
inverse kinematic analysis and motion planning. Differentiat- 
ing (7) and (8) and eliminating iit, i l l ,  i i , b ,  and ,Ob, we can have 
a constraint for each contact as 

where (., is an 1 x '11 vector. Every contact will generate one 
constraint equation, so when the linkage contacts several obsta- 
cles, more holonomic constraints are generated. Suppose there 
are r number of constraints, then the holonomic constraint, in 
vector form, can be defined by 

where 

T T  U = [UT, UT,. . . ,U,] 

includes the contact surface parameters of all the contact 
points. Note that during the motion, the number r may change 
because the robot may contact different numbers of obstacles 
in different motion periods. 

In this study, we only consider the case where the I' 

constraints are independent. For r independent constraint 
functions, the robot can only have mobility in ( 7 ~  - r ) -  
dimensional space. If r = 71 then the motion is totally blocked. 
Note that r 3 n because the maximum number of independent 
constraints on an 71 DOF linkage is n. In summary, the 
holonomic constraints are assumed to satisfy the following 
condition: the constraint functions are independent in the sense 
that the r x n matrix 

C ( e ,  U )  ER""' 

has full rank 'r. 

a robot link and an obstacle is allowed only to be rolling (the 
translational motion usually causes wear damage on the link 
surface), certain additional constraints must be imposed on the 
robot motion control. These constraints are of nonholonomic 
type since, as will be seen later, these constraints cannot be 
written in the form of (7) or (8) while they have to be expressed 
in terms of joint velocities and the time derivative of surface 
parameters as 

71 711 L, 

d H , + C b , r  dUl+n,t f i t  = 0 J = 1, 2, ' ' ' 3 1 )  (10) 
r=l 1=1 

where 711 is the number of total constraints, the os and 1)s are, 
in general, functions of H s and U .  711 represents every one 
of the components in U ,  and rrr,, is the total number of U S  

in U .  Furthermore, if (10) is nonholonomic, this differential 
expression is characterized by being not integrable. 

Cai and Roth [4], Montana [15], and Cole, Hauser, and 
Sastry [5] have studied the motion of contacted objects in 
general. Their studies provide kinematic relations including 
both holonomic and nonholonomic types. Based on their 
studies, certain nonholonomic constraints are usually involved 
in motion constraints when pure rolling between two objects 
is expected. 

To formulate the nonholonomic constraints for obstacle 
accommodation, we express the translational and rotational 
velocities of joint coordinate system 0, with respect to the 
world coordinate system by v, and w,. U ,  and w,  can be 
calculated in terms of joint variables as 

/ 
I 

[;] = Jole, 
where J o i  is the Jacobian matrix for joint coordinate frame 
Oi and 

Note that v, and w, are functions of joint variables 01. 0 2 .  . . . . 
and 0, as well as their velocities. 

Contact point velocity in terms of the world coordinate 
system can be calculated through 

Since pure rolling motion between the contact link and the 
obstacles is required, the velocity of a contact point is required 
to be zero. Therefore, the constraints on the motion are 

v, + w,  x Rbx, = 0. (13) C. Nonholonomic Constraints 

The holonomic motion constraints developed in the last 
section can be considered to be natural or physical since they 
are based on the fact that the contact object will not merge 
at contact points. The assumption is true for any rigid body 
contact, since the constraints developed must be physically 

Equation (1 3) consists of a set of equations involving joint 

Differentiating (13) yields (noticing p: = 0 and ob is fixed 
with respect to coordinate) 

(14) 
satisfied at every contact point. R$b = W ,  x R ~ X ,  + R&ir + &  

There are some situations in which certain extra constraints 
need to be imposed onto the motion. These constraints are 
considered to be artificial in the sense that they are made by 

here 

the robot designer. For instance, if the relative motion between p; = V I .  
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0 Xn 

Fig. 3. A mobile robot moving through a narrow path. 

From (13), we have 

RI;i:b = RhXi. 

The outward normal of the environment's surface at the 
contact point can be calculated by 

The outward normal of the robot bumper at the contact point 
in terms of 0, can be calculated as 

cos y 
sin Y 

L ' A  

The N,, can be represented in terms of the world coordinate by 

Equation (15) can be written in terms of surface parameters From (19) and (21), we have 

a i h  i ) X b ,  ai: 1 [-(p)] = R(0) [?;] (22) 
of both links and obstacle as 

" ). (16) Rt ( d'lLh ut, + z ~ h )  = R;, ( 2 U, + 2 6 ,  du, du, 

Equation (16) provides constraints in terms of the surface 
variables. In general, (13) and (16) cannot be integrated 
into a form that consists of only joint variables and surface 
parameters without their time derivatives involved. Therefore, 
(13) or (16) provides the motion for a set of nonholonomic 
constraints for the motion. 

D. Constraints on the Motion of a Wheeled Mobile Robot 

In this section, we discuss the constraints on a wheeled 
mobile robot when it passes through an area where contact 
with obstacles is expected. Fig. 3 shows a wheeled mobile 
robot that has a circular bumper. The scenario represents 
the case in which the robot is supposed to pass through 
a narrow opening (narrow door or narrow path). Because 
of the imperfect performance of the controller or inaccurate 
knowledge of the environment during the motion, the robot 
may make contact with the environment. 

If n denotes the radius of the bumper, a contact point on the 
bumper can be determined in terms of coordinate 0 0  through 
angle y by 

. 

2,. = 2 0  + acos  (y + 0) 

?h = yo + a sin (y  + 0)  (17) 

where 0 is the orientation of Or,, with respect to world 
coordinate 0 0  and y is the angle of contact point position 
vector in terms of On,. If the environment is described in 0 0  

as 

y = G ( x )  

then we have 

where 

cos (.) -sin (.) 
sin (.) cos (.) R(. )  = 

Equations (18) and (22) are holonomic constraints on the 
motion of the robot in contact with the environment. From 
simple kinematic analysis, the contact point velocity is 

(23) 
lLf i  cos (y + 0) 1 = O. 

-a4 sin (y + 0) 

It can be easily seen that, if the shape of the bumper is more 
complicated than a circular shape, a is no longer a constant, 
(23) will be a more complicated nonholonomic constraint 
equation. 

111. INVERSE KINEMATICS 
In this section, a general inverse kinematics solution is 

provided that calculates the joint motion for any desired end- 
effector motion for a robot under any kinematic constraints 
(both holonomic and nonholonomic). 

In the analysis, we present both holonomic constraints and 
nonholonomic constraints in a unified form 

H ( 8 ,  U)6 = 0 (24) 

where H is an r' x 71 matrix, is the number of constraints, 71 

is the number of system variables, and U is the contact surface 
parameter vector. Throughout this section, the constraints are 
assumed to satisfy the following conditions: a) the number of 
constraint functions is less than the degrees-of-freedom, i.e., 
r' < n; b) the solution set (6 E RI' I H ( 8 ,  U)6 = 0} is not 
empty; and c) the constraints are independent in the sense that 
the r' x n matrix H has full rank of T .  

/ 
I 
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A.  Differential Inverse Kinematics 

In developing the inverse kinematics, we consider the 
differential inverse kinematics. We do so for the following 
reasons. a) In real applications, a robot may contact obstacles 
at any time. Since the robot must satisfy the constraints at 
all points along its trajectory, the differential analysis is more 
appropriate. b) The contact properties between a robot and 
obstacles change during the motion, so the motion constraints 
change. In some cases, certain motion constraints only appear 
in one period of the motion. In these situations, the general 
inverse kinematics solution may not exist. For a robot to satisfy 
the changing constraints at all times, only the instantaneous 
kinematics is applicable. 

In general, the forward kinematics give a relationship be- 
tween the variables of the linkage end-effector (position and 
orientation) and the joint coordinate variables. Let 

5 = [./.I, . / . 2 . . ' .  ..I.,,,] T 

denote the position and the orientation of a linkage end- 
effector, and let 8 denote the vector of joint variables. The 
relationship between z and 8 can be generally expressed as 

z = F ( 8 )  (25) 

where F E RrrLX1 is a set of functions of 8. Differentiating 
(25) yields the following equation: 

or 

where 

E RnLXn J ( e )  = - 
a F ( 8 )  

8 8  
is the linkage Jacobian matrix. If the robot works in an 
obstacle-free environment, the solution for 0 can be found 
for the following three cases separately. 

Case A-rn = ri: In this case, the Jacobian matrix is an 
ii x rt, square matrix. Assuming the Jacobian has full rank of 
n, the solution can be obtained simply through 

e =  J- lk .  (27) 

Case B--rn > 11: In this case, the number of equations is 
greater than the number of unknowns, and the Jacobian matrix 
is an rri x n matrix. The solution can be obtained through 
minimizing the least-square error 

(28) E ( 8 )  = (J8 - Z ) ( J 8  - i)T 

and the solution is 

6 = J'i: (29) 

where 

J' = ( J T J ) - l J T  

is the pseudoinverse Jacobian matrix. Here we assume that 
matrix ( J T J )  has full rank of 'tii .  

Case C--rrr < $11: In this case, the number of equations is 
less than the number of unknowns. The solution can be found 
through minimizing 

L ( 8 )  = eTe (30) 

subject to 

x =  J 8 .  (31) 

The solution depends on the pseudoinverse Jacobian matrix 
J' = J ' (HHT)- ' ,  and 

8 = J ~ ( J J ~ ) - % .  (32) 

Here, we assume that matrix ( J J T )  has full rank of 71. In the 
next section, we will develop the inverse kinematics equations 
to solve 6 in terms of k for robots under constraints due to 
contact with obstacles. 

B. Inverse Kinemafics Under Consfraints 

When a robot linkage system is subject to constraints due to 
contact with obstacles, the solution to the differential inverse 
kinematics is more complicated since the solution has to 
satisfy the contact constraints. Suppose the number of molion 
constraints is r . If rrt +r > n, then the motion requirements are 
more than the number of joint variables (we see constraints as 
motion requirements), and the solution cannot be absolutely 
obtained. Just as with the case of itt > ii for robots in 
free space, the solution is obtained through optimization 
techniques. If m + r = 71, the number of requirements of 
motion is the same as the joint variables, and the solution can 
be found through manipulating n equations for ri unknowns. 
If r n  + r < 7 1 ,  the system is considered to be redundant in the 
sense that the number of system unknown variables is greater 
than the number of motion requirements. Just as with the case 
of 71 > rri for the robot moving in free space, the inverse 
kinematics is obtained through optimization techniques. In 
the following, we will develop the mathematics to solve the 
differential inverse kinematics for these three cases separately. 

Inverse Kinematics When in  + r > 11: When rri + T > i t ,  

the number of task dimensions and the number of motion 
constraints are greater than the number of system unknowns; 
therefore, the exact solution does not exist. The problem can 
be Folved by minimizing the least square error 

E ( 8 )  = ( J 8  - *)T(JCi  - 2 )  (33) 

subject to 

H Q = 0  (34) 

where H is the motion constraints involving both holonomic 
and nonholonomic types of constraints. The solution to this 
optimization problem [l] ,  [12] is (see Appendix B) 

6 = ( J T J ) - ' [ J T  - ~ T I H ( ~ T J ) ~ ' ~ ~ T ] ~ ' ~ ( J T J ) - l J T ] x  
(35)  

In ( 3 3 ,  all the inverse operations are assumed on an invertible 
matrix. 
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Inverse Kinematics When 'iii + s i '  = n: When 'iii + '1' = '11, 

since the number of unknowns equals the number of motion 
requirements and the number of constraints, the exact solu- 
tion exists. In this case, n, equations available, in which 71) 
equations are from motion tasks, i.e., 

s = J W I  x ne I I 

and T from the motion constraints, i.e., 

HTxn e = 0 

the solution can be found by directly solving the following 
equation (see Appendix B) 

Fig. 4. Motion toward a target. 

In (36), all the inverse operations are assumed on an invertible 
matrix. 

Inverse Kinematics When m + T < n: When m + r < n, 
the number of system unknowns is greater than the number of 
motion task requirements (number of task dimensions) and 
the number of motion constraints; therefore, the system is 
undetermined. We solve the inverse kinematics by minimizing 
the value of 

(37) 
. T .  

L = 8  e 
subject to 

x =  J 8  (38) 

and 

H 8  = 0 .  (39) 

The solution to this optimization problem is (see Appendix B) 

e = [JT - H T ( H H T ) - ' ( H J T ) ]  
. { J [ J T  - H T ( H H T ) - ' ( H J T ) ] } - ' & .  (40) 

In (40), all the inverse operations are assumed on an invertible 
matrix. 

IV. PATH PLANNING 

A.  Relative Motion between a Robot and Obstacles 

To make motion planning for a robot in an obstacle-cluttered 
environment, we need to consider the relative motion between 
the robot and the obstacles. For any particular obstacle, the 
relative motion between the robot and the obstacle will be one 
of the following situations: 

1) The robot moves towards the obstacle; 
2) The robot moves while remaining in contact with the 

3 )  The robot moves away from the obstacle. 
obstacle; 

Target 
e 

Fig. 4 shows these three types of relative motion between a 
two-link robot and an obstacle. As can be seen, during stage 1 
to stage 3 ,  the robot moves close to the obstacle but yet is in 
free space; from stage 3 to stage 5 ,  the robot moves in contact 
with the obstacle (slides along the obstacle); finally during 
stage 5 to stage 7, the robot moves away from the obstacle. 

These relative motions can be interpreted in the robot joint 
configuration space. Recall that once a robot is in contact with 
certain obstacles, a set of holonomic constraints is established 
on the robot motion. Denoting the undifferentiated form of 
the holonomic constraints as 

N ( 8 ,  U )  = 0 (41) 

we can divide the motion space into two parts: N ( 8 ,  U )  > 0, 
where the robot can move without contacting the obstacles, 
and N ( 8 ,  U )  < 0, into which any robot motion is forbidden. 
Note that N ( 8 ,  U) = 0 represents the sub-space in which 
the motion of the robot is in contact with obstacles. Fig. 5 
describes the relationship in joint configuration space. (In the 
figure, 8" is the velocity calculated for the robot under motion 
constraints, and 8 is the velocity calculated as if the robot is 
in obstacle free space. They will be used in later discussions). 
As shown in the figure, from time t = t o  to t = t 2  the robot 
moves in free space. From t = t 2  to t = t,,, the robot moves 
in contact with the obstacle, and from t = t,,, to t = t , , ,  the 
robot moves in free space again. At t,, the robot reaches the 
target. 

In the motion, if N ( 8 ,  U )  = 0 is satisfied, the robot is 
in contact with the obstacles. In this case, N ( 8 ,  U )  = 0 
should be considered in joint trajectory planning so that the 
motion planning can generate a robot path without violating 
the kinematic constraints. If relative pure rolling motion is 
required, the nonholonomic constraints must be added and 
the trajectory planning must be under both the holonomic 
and nonholonomic constraints. The challenge for the motion 
planning is to generate a unified algorithm that generates joint 
motion under any specified motion constraint (both holonomic 
and nonholonomic). 

. o  

/ 
I 

/ 
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l=l,, -4 Q' Link 2 

' 0  
II I '3 '4 

\---- 

N < O  
\ 4 . d  

( o b s t a c l e )  0 2; Link I 
N = O  

,e ( r a d )  

H ( 8 ,  u p  = 0 (42) 

to represent any specified motion constraint (both for holo- 
nomic and nonholonomic): Note that the holonomic constraints 
are involved in H ( 8 ,  U)@ = 0 through their differential form 
(14). 

It is noted that (56) can be differentiated and the surface 
parameter changes, U ,  can be derived in terms of 8 as 

U = pp,  U ) @ .  (43) 

Throughout this section, we assume that the robot is equipped 
with tactile skin sensors so that the position of contact can 
be detected. 

B. Path Planning 

The tasks for obstacle accommodation motion planning are: 
1) To make a real-time decision whether: (a) to contact or 

not to contact the obstacle (if previously not in contact), (b) 
to remain in contact with the obstacle or to separate from the 
obstacle (if previously in contact); 

2) To formulate the constraints; 
3 )  To find the robot motion trajectory under formulated 

constraints. 
As the first task in motion planning, we provide a method 

for robot controllers to make the decision. Once a decision is 
made, we provide an algorithm (based on our inverse kine- 
matics) that provides joint motion for accomplishing assigned 
tasks. As previously discussed, contacting or not contacting 
the obstacle gives totally different mathematical models for 
motion planning. During motion involving contact with obsta- 
cles, certain holonomic and nonholonomic constraints need to 
be imposed on the path planning. If the controller decides not 
to contact obstacles, motion planning is the same as that for 
a robot in free space. 

In this section, we consider the case in which one obstacle 
exists in the moving area of a robot. As in Section 111, we 
write the Jacobian of the robot as 

is the joint velocity vector. For a wheeled mobile robot, z 
can be the position and orientation of the robot, and 8 can 
be the motion control variables such as wheel velocities. The 
trajectory planning algorithm is as follows. 

Step I :  Generate a desired motion path for the end-effector 
as the robot works in obstacle free space x. The simplest 
algorithm for z can be 

i: = +'I - z) (44) 

where xd is the target position, z is current end-effector 
position and orientation. k E R1"xwL is a constant gain matrix. 
The calculated x will be used to find 8 through inverse 
kinematics. 

It is noted that in obstacle free space, (44) generates the path 
to the target in the shortest distance (straight line). However, 
when obstacles exist, it may not provide the best choice for 
finding 6. For example, in Fig. 6, the dashed line represents 
the trajectory zl,  which is generated through (44). It can be 
seen that the trajectory represented by the solid line z 2  may 
be better than 5 1  (the straight line) in the sense that it leads to 
a motion in which the robot has less contact with the obstacle. 

Step 2: If the robot is in free space, the joint path is found 
through (27) for the case in which n = T I L ,  (29) for the case 
in which 7r1 > n, or (32) for the case in which rri < I L .  

Step 3: If the robot is in contact with the obstacle, we first 
calculate the differential changes of the joint variables, 8 
based on (27), (29), and (32), then check whether 8 ( t  + At)  
violates the kinematic constraints (here, At is the sampling 
time) by using the holonomic constraints N(H(-),  U) = 0 .  If 

(45) 

motion into free space is allowed for the desired end-effector 
trajectory 2. Calculated 8 IS then used to generate the 
trajectory for the robot motion. Note in (45) 

' 0  

N ( 8 ( t  + At) ,  u(t + A t ) )  > 0 

. o  . 

8 ( t  + at) = e(t) +eo at 

i: = J 8  u(t + At)  = u(t)  + io At 

where 

Z E RTrL 

and 
' 0  io = P ( 8 .  u p  . 
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Fig. 7. The pin-tip type of contact 

However, if 

N ( 8 ( t  + At) ,  ~ ( t  + At)) I 0 (47) 

the trajectory generated by (27), (29), or (32) violates the 
motion constraints, i.e., the robot can not achieve Z without 
contacting the obstacle. In this case the joint trajectory is 
generated by (359, for the case in which n < m + T ;  for 
the case in which n = m + T ,  (36) can be used for the inverse 
kinematics; for the case in which n > m + T ,  (40) is used for 
solving the inverse kinematics. 

Step 4: Update the surface parameter vector U. There are 
two methods to update U. 

a) Measuring U in real time from contact sensors. If a 
tactile sensor is equipped, and the contact is assumed to be pin- 
tip type, then U only consists of the link surface parameters. 
The surface parameters of contact links can be measured 
directly. 

b) Using (43), we can find the U and update U by 

u(t + At) = u(t)  +hat. (48) 

Step 5: Repeat step 1 till the motion task is fulfilled. 
Note that in real applications, we usually do not have accu- 

rate knowledge about the obstacle surface. In the calculation, 
it is easier if we assume that the contact point is the pin- 
tip type, as shown in Fig. 7. Based on the pin-tip contact 
assumption, the obstacle surface parameters do not appear in 
the constraints. 

As shown in Fig. 5, we denote the joint velocity developed 
by (27), (29), or (32) as eo (motion without obstacle contact) 
and the joint velocity calculated by (33 ,  (36), or (40) as 6. 
(motion with obstacle contact). It is seen from the algorithm 
that when the robot is in contact with the obstacle, we should 
first calculate the joint velocities as if the robot is in free 
space. The reason is that if the motion in free space is allowed, 
N ( e O ( t  + At), ~ ( t  + At)) > 0, the robot should move into 
the free space by selecting 6 = 8 . The motion in free space 
usually is more efficient and less likely to cause damage. For 
example, in Fig. 5, when the robot moves to the point denoted 
as t,,,, the motion toward the target without concerning the 
obstacle is allowed as 8 , and the motion command is selected 
as the robot moves in free space. 

' 0  

. o  

C. Illustrative Examples 

In this section, we apply the motion planning algorithm to 
a wheeled mobile robot and a robot manipulator for motion 

* control in environments containing an obstacle. 

-2 
1 5  I h  17 I S  19 2 21 2 2  2 3  2 4  

9, (rad) 

Fig. 8. Simulation results of the path in H I  6'2 configuration space. 

Example I-Path Planning for  a 2 DOF Manipulator: If we 
neglect the width of the links of the robot shown in Fig. 4, the 
holonomic constraint can be formulated as 

-pbz sin (0, + 0,) +pby cos (0, + 0,) + L2 sin (65) = 0 (49) 

where pbz = 0.3536 and pby = 1.061 are the coordinates of 
the contact point in 0 0 .  For simplicity, the contact is assumed 
to be the pin-tip type. In this example, we generate i: for the 
robot to move toward the target in a straight ,line, i.e., 

Z = k ( s d  - Z )  

where k is a 2x2 gain matrix. Here m = 2, r = 1, and 
n = 2(m + T > n), thus, (35) is used to calculate the 
constrained joint motion. We only consider the holonomic 
constraints on the motion, which means that the relative sliding 
motion between the second link and the obstacle is allowed. 
Fig. 8 shows a simulation result based on the algorithm 
developed in this section. In Fig. 8, the solid line is the 
simulation result of the motion planning; the dashed line is 
the plot of the holonomic constraint function for the motion 
of the two link arm due to the obstacle. It can be seen from 
the figure that, in the first period of time, the robot (link 2) 
moves close to the obstacle but yet is in free space. Then the 
robot moves in contact with the obstacle. Finally, the robot 
moves apart from the obstacle and into the free space again. 
The motion sequence is depicted in Fig. 9. 

Example 2-Path Planning for a Wheeled Mobile Robot: 
Fig. 10 shows a specific case of Fig. 3, in which the obstacle 
in contact with the mobile robot has the contour of a cylinder 
with a radius of rb. Neglecting the detailed deduction, the 
holonomic constraints due to the contact are written as 

and 

yo + T,  sin (0 + y) = r b  sin a.  

/' 
/ 
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target link length: I (m) 

I target position: (-0.3, 2) 

i' 
Fig. 9. The motion sequence. 

the world 

Fig. 10. A mobile robot in contact with a cylindrical obstacle. 

Restricting the sliding motion to prevent wear damage on the 
robot surface (bumper), a nonholonomic constraint can be built 
based on the factor that the velocity at the contact point is zero. 
Here, we assume that the robot has an actuator to control 
bumper rotation. 

$0 + 7', cos ( e  + 7)ci = 0. 

s + i . = c i  

(51) 

Differentiating (50) yields 

io - sin ( H  + y)fi - r, sin ( H  + y ) j  = -T6 sin ( t r ) t l  

7', cos (0 + y)j = Tb  cos (tk!)&'. ( 5 3 )  

It can be found that the five equations involved in (52) 
and (53) are linearly independent. Choosing four independent 

constraints from the five equations in (52) and (53) ,  we have 
the constraints for the mobile robot in the motion as 

0 

1 1 
0 
0 

0 I ' ,  sin ( 0  + y)  77, sin ( m) I] = 0 (54) 

0 

Fig. 1 I(a) and Fig. 1 l(b), show the simulation results of . I . ( ) ,  

yo, and H for the robot in the processing of moving toward the 
target. Fig. 12 depicts the motion sequence. 

The examples used in this section are based on simplified 
models and simplified environments. In real applications, the 
situations will be more complicated. For example, obstacle and 
link surface properties will be more complicated and motion 
constraints are generally more difficult. One of our future 
studies will focus on improving the algorithm and designing 
a new robot structure to make obstacle accommodation more 
viable for real-time application. 

D. Motion Planning under Multiobstacle Construints 

In many cases, there may be more than one obstacle 
contacting the robot (I' > 1). In multiobstacle environments, 
we use an algorithm similar to that for the robot in contact 
with a single obstacle except for Step 3.  The motion planning 
algorithm needs to decide in real-time whether: 1)  to contact 
or not to contact certain obstacles (if they are previously not 
in contact); 2) to remain in contact with certain obstacles or to 
separate them from (if they are previously in contact); and 3 )  
to contact fewer obstacles or to contact more obstacles. This 
section will provide an algorithm to make these decisions and 
provide the corresponding motion path. 

In the following, we will use the example shown in Fig. 
13 to explain the path planning algorithm for a robot in a 
multiobstacle environment. 

After the end-effector motion, i-, is designed, we determine 
the joint motion as follows: 

First, we calculate the joint motion as the robot is in free 
space. We denote the solution as 8,. If 8,) does not violate the 
constraints, the robot can move toward x without contacting 
anything in the next step. We mark the joint motion as 8,) 
and use it as the planned motion path for the next motion step. 

If 9 violates the motion constraints, the robot has to contact 
some obstacles in the next motion step (we mark the joint 
motion as 8, ). However, we still demand that the robot 
contact as few obstacle as possible in the next motion step. 
In this case, we plan the joint motion as follows. 

We take off the constraints due to Obstacle I ,  and form 
a new constraint H 2 ,  concerning only Obstacle 2. Then, we 
design the joint motion under the constraints of H 2 ,  denote the 
resulting joint motion as e2, and if 8, satisfies the constraints 
N1 > 0 (NI = 0 is the holonomic constraints due to Obstacle 
l), although the robot is in contact with Obstacle 2, it can 

. n  . o  

. 0 

. n- 

. n  ' 0  
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motion steps 

Fig. ]](a).  The simulation results of ro  and yo. 

I I 
I 

I \  I 

8 I S -  
( rad ) 

1 -  

0.5 - 

J \  

motion steps 

Fig. 1 I(b). The simulation results of 6'. 

move without contacting Obstacle 1. In this case, we mark the 
joint motion as 8, . If 8, violates the holonomic constraints 
due to Obstacle 1 (N1 5 0), we mark it as 8, (that means no 
motion is possible when the robot is contacting only Obstacle 
2). 

Similarly, we design the joint motion under constraints due 
to Obstacle 1 but without considering Obstacle 2 and denote 
the solution as either 8, or 6;- depending on whether the 
solution 8, satisfies N, > 0 or N, 5 0, respectively. 

If 8, or 8, exists, then the next motion step can be 
. 0" . 0" 

without touching Obstacle 1 or Obstacle 2. If 8, exists, 8, 
is used as the motion planning for the next motion step. If 
neither 8, nor 8, exists, the motion has to be in contact 

.with both Obstacles 1 and 2. In this case, the joint motion is 

. 0 *  . 0  

. 0- 

. 0' 

' 0  

. 0* . 0' 

' 0-  ' 0' 

m e e t  : x = 0.5. v = 3.0, 0 = 0.0 

/ 
I 

/ 

Fig. 12. Motion toward the target. 

designed under constraints H ,  which involves all the obstacle 
contact. 

It is seen that, in designing 8j (j = 1, 2) there are three 
combinations of constraints due to obstacles: Obstacle 1 only, 
Obstacle 2 only, and both Obstacle 1 and Obstacle 2. For T 

obstacles, there are total 

. 0  

r 

s = cc; (55)  
j=1 

number of total combinations of obstacles, where C: is the 
number of combinations of T for j. Suppose we have so 

number of solutions, ej (here, j = 1," . ,so)  out of s 
combinations of constraints, the next motion step can be 

. 0' 
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Obstacle I 

Fig. 13. A robot in contact with two obstacles 

no 

formulate every constcaint conbination of all the 
obstacles and find do F number of obstacles in  next motion step 

which contacts least 

+ r  
select @\hi( 

d =  - 

no motion -7- finis end 

Fig. 14. The path planning diagram 

without contacting all the obstacles. We select the one in .so 
solutions that contacts the least number of obstacles as the 
final solution. If there is more than one solution that contacts 
the least number of obstacles, the path is determined based on 
the one that is closest to 6' (the joint motion designed as in 
free space), i.e., the one that minimizes the value 18 - 8, 1. 
The path planning algorithm in the flow-chart diagram shown 
in Fig. 14 summarizes the aforementioned discussion. 

. o  . o  

V. CONCLUSIONS 

This paper introduces a motion planning methodology for 
obstacle accommodation. To achieve the motion planning, 
the paper first developed a general formulation for motion 
constraints due to obstacles. Two types of motion constraints 
are discussed: holonomic type and nonholonomic type. The 

nonholonomic constraints are developed to prevent the robot 
from wear damage from obstacle contact. 

Next, this paper provides a general inverse kinematics 
solution for robots in contact with obstacles. According to 
different constraint situations ( ,rr / ,  + T < n, !rr/, + T = n, and 
7rL + 7 '  > n)  different equations of the inverse kinematics 
need to be selected. The inverse kinematics study is new and 
important because it is the first to provide a general inverse 
kinematics for robots in contact with obstacles at unspecified 
points on unspecified links. 

When a robot moves among obstacles, the controller has to 
generate joint paths according to whether it  moves in a free 
space or in contact with obstacles, as well as according to 
different motion constraints and then use the corresponding 
equations to find the inverse kinematic solutions. If the robot 
moves in free space, then (27), (29), or (32) should be properly 
selected according to whether r/, = 'm, 7~ < VI , ,  or Sri. > m, 
respectively. If the robot moves in contact with obstacles, i.e., 
N ( 8 .  U )  = 0, the path generator should formulate the motion 
constraints H ( 8 ,  U ) 6  = 0 and use ( 3 3 ,  (36), or (40) to solve 
the inverse kinematics for the cases 'rri, + T > 71, 'rr). + 'r = 'I/,, 
or m, + 7' < 71, respectively. 

Finally, this paper develops an algorithm for path planning 
based on motion constraint formulation and inverse kinemat- 
ics. The task for path planning is to design end-effector motion 
and to find the consequent joint motion that will allow a 
robot to achieve motion towards the target without violating 
motion constraints due to obstacles. During the motion, the 
robot may move in free space (no contact with obstacles) in 
one period of time and contact obstacles in another period 
of time. The number of contacted obstacles may change as 
well. Therefore, the challenge for the path generator is to 
take into consideration the changes in contact properties when 
generating the motion path. Two computer simulation results 
based on this algorithm are presented. One of the simulations is 
performed on a two-link robot and the other one is performed 
on a wheeled mobile robot. 

/ 
/ 

/ 

APPENDIX A 
CONTACT POINT DESCRIPTION 

In our study, the homogeneous transformation is used to 
describe the coordinate transformation between the joints. 
Suppose the homogeneous transformation matrix from 0, - 1 

to 0, is Tj-, [lo], [16] 

then the transformation matrix from 0" to 0, can be expressed 
as 

Since 0, is rigidly attached to the /th link, the 7th link surface 
can be described in 0,. Suppose the surface of link / is 
expressed in terms of 0, as 

5, = [ J , ( U , .  ( I ? ) .  . f / l ( ! L 7 .  U / ) .  Z , ( I L , .  O I ) l 1  
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where . L , ,  y,, and 2 ,  are the coordinates of any point on the 
surface of link i with respect to 0,, and where U, and (1, are 
the parameters of the surface, then the point can be determined 
in the world coordinate system 00 as 

where 

x = [A,. X2,.  . ' .A , ] '  

Expending the equation L yields 

L = ( J 8 ) T ( J 8 )  - 2 k T ( J 8 )  +kTS+XTH8. (62) 

To find the optimal solution, we have to solve the following 
( 5 8 )  0 0 0 1 

where equation: 
.- 

2 1 0  = l.I.10. y,0, z,0lL 

is the vector from origin of the world coordinate system to the 
point. According to (3), we have 

X , O  = R~z, +pb. (1) 

Similarly, if we assign a coordinate system Ob to the 
obstacle, then the surface of the obstacle can be expressed 
in terms of Ob as 

T z b  [ r b ( ? / , b ,  I J b ) ,  ! / 6 ( I / b >  o b ) >  z b ( i L b >  ? / b ) ]  . 

Any contact point on the obstacle surface can also be expressed 
in terms of the world coordinate system as 

E = 2 J T J 8  - 2JTk + HTX = 0 .  (63) 

Assuming that ( J T J )  has full rank of 'U, solving (63), we 
obtain 

a8 

(64) 

Substituting (64) into (34), we have 

X = 2[H(JTJ)-1HT]-1H(JTJ)-1JTk. (65) 

Here, it is assumed that matrix H ( J T J ) - l H T  has full rank 
7'. From (64) and (65), we obtain the solution 

8 = ( J T J ) - l [ J T  - HT[H(JTJ)-lHT]-lH(JTJ)-l J T ] k .  
(35) 

When m+r  < 71, the number of system unknowns is greater 
than the number of motion task requirements (number of task 
dimensions) and the number of motion constraints; therefore, 
the system is undetermined. We solve the inverse kinematics 
by minimizing the value of 

(59) 

is the coordinates of the contact point on the obstacle surface 
in terms of the world coordinate and TI; is the homogeneous 
transformation matrix from the world coordinate system to the 
obstacle coordinate system Ob 

subject to 

Equation (6) can also be written as H e  = 0. (39) 

Let 
(3) b b 

Z b 0  & Z 6  + Po.  
P = [Pl, PZ. ' . ' 1 PrI7 

x = [A,, x2 , .  . . . X,,]T 

APPENDIX B and DERIVATION OF EQUATIONS (35) AND (40) 

When m + 'r > 'II, the number of task dimensions and the 

system unknowns; therefore, the exact solution does not exist. 
The problem can be solved by minimizing the least-square 
error 

number Of motion constraints are greater than the number Of be the Lagrange multiplier vectors. The new objective function 
is 

L ( 8 ,  p, A) = bT8 + pT(J6 - 2) + XTH8. (66) 

E(8) = (J8 - Z ) T ( J b  - S )  (33) The necessary condition that the optimal solution satisfies is 

subject to 
i)L ' 

- = 2 8  + J T p  + HTX = 0. 
a8 

H e  = 0 (34) Thus, by solving (67) we have 

(68) 
. 1  

2 
where H is the motion constraints involving both holonomic 

tipliers, a new objective function can be formed as 

8 = - - ( J T p  + HTX). 

Substituting (68) into (38) and (39) yields 
and nonholonomic types of constraints. Using Lagrange mul- 

L ( J 8  - 5 ) ' r ( J 8  - S) + X'rH (61) H (  J T p  + HTX) = 0 (69) 
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