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Design Parameters for Sampled-Data Drives for
CNC Machine Tools

YORAM KOREN, MEMBER, IEEE, AND JOHN G. BOLLINGER

Abstract-A mathematical analysis of a typical sampled-data servo-
drive for computer numerial control (CNC) machine tools is presented
with the objective of providing the control engineer with useful design
charts for the selection of system parameters. A mathematical model
is first developed which facilitates the evaluation of the relation
between servo-loop gain and computer sampling rate. The question of
stability is reviewed, and a solution for the time response of the
sampled-data system is presented. Different performance criteria are
discussed including: selection of desired damping factor; maximum
overshoot; integral of speed square-error; position steady-state error;
and the absolute value of the error. The latter criterion has been chosen
as the most useful approach. System performance evaluation is
presented in the form of dimensionless charts. A final design procedure
is recommended which utilizes a dimensionless chart to select sample
rate and gain in order to achieve an optimal performance consistent
with allowable contouring accuracy and closed-loop bandwidth.

INTRODUCTION

A COMPUTER numerical control (CNC) system may utilize
many alternative types of position control. One method

wherein feedback is achieved with an external digital control
loop is discussed and compared in [1]. Reference pulses gener-
ated by the mini-computer are supplied to the digital logic.
This type of control uses an up-down counter as a comparator
element, and was also discussed in [2] and [3]. An alternative
control method uses the mini-computer as part of the control
loop by replacing the up-down counter. The computer samples
the feedback signal, compares it with the reference, and sends
the resulting error through a digital-to-analog converter (DAC)
to drive the motor. A block diagram of this system is presented
in Fig. 1.

Although a digital encoder is used in the block diagram of
Fig. 1, a resolver or an inductosyn could be used as the feed-
back device. The interface circuitry will differ depending on
the hardware chosen. The interface to a digital encoder is the
simplest. It consists of a buffered counter which is incre-
mented by the pulses produced by the encoder. The mini-
computer samples the contents of the counter at fixed time
intervals and immediately clears it. The counter contents is
subtracted from, or added to, a software up-down counter
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Fig. 1. Typical sampled-data servo-drive for CNC machine tool.

which serves as the loop's comparator. Notice that the output
register of the computer with the DAC typically plays the role
of a zero-order-hold (ZOH) circuit, which must be included in
computing the transfer function for the entire drive.

THE PROBLEM OF DESIGN

The described system belongs to a class of real-time control
systems in which the feedback signal is sampled at fixed inter-
vals, processed in the computer, and returned via a DAC. Com-
paring such a system with its continuous counterparts, there is
a main difference; namely, the signal fed to the machine drive
is not a continuous signal, but a sampled-data reconstructed
stepwise constant velocity reference.
A block diagram representation of the system under consid-

eration is shown in Fig. 2. The counter associated with the
encoder does not affect the system performance, and therefore
is not noted in the figure. Actually, there are two samplers in
the circuit; however, their location in the loop requires consid-
eration of only one of them. In order to present the classical
error-sampled control system, the error-sampler alone will be
considered. The transfer function of the ZOH is well known
where T is the sample time. The transfer function of the
machine drive assumes the simplest model where T is the mech-
anical time-constant of the motor. The open-loop gain of the
system is

K = KcKmKe (1)

where

KC includes the gains of the DAC in [V/pulse] and the
power amplifier;

Ke is the encoder gain in [pulse/rad];
Km is measured in [rad/s/V].

Numerical solutions to particular examples of the system
presented in Fig. 2 can be found in the literature: e.g., in [4,
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Fig. 2. Block diagram of control loop.

pp. 125-129]; [5, pp. 128-131 and pp. 173-175]; [6, pp.
139-140]; [7, pp. 145-149]. However, a general solution to
the problem of this class of servo system design has not been
presented in any of these sources.
A general mathematical solution to a system similar to the

one in Fig. 2 but without the ZOH was presented in [81. In
[5, pp. 132-142] and [6, pp. 327-336], the maximum over-
shoot problem has been discussed, but again, a system which
contains a ZOH can not be investigated using these methods
since they assume only two dominant poles in the closed-loop
transfer function.

The second-order sampled-data system was solved also in
[7, pp. 170-178] where maximum overshoot and damping
graphs have been obtained. However, in this reference a certain
pole-zero configuration of the closed-loop transfer-function is
assumed, rather than a system in which the pole-zero locations
must be determined from the open-loop parameters. The latter
is the approach treated in this paper.

STABILITY ANALYSIS

The open-loop transfer function is

1-e-sT K
G(s)= - (2)

s s(l + sr)

The first step in the analysis involves a determination of the
open-loop z transform function G(z). It can be found by a
partial-fraction expansion of G(s), and conversion, term by
term, to z transforms with the aid of an appropriate table:

/1 IT f \
G(s)=K[l -eST] S sT+ I(3)

After z transformation

/z- 1\ Tz TZ TZ
G(Z) =K -)F r] . (4)

For simplicity, the term e-TIr will be defined henceforth as
E. From (4)

G(z) (z-E)[T-r(z-1)] + r(z-1)2 (5)
(z-1 )(z--E)

For stability analysis the polynomial of interest is the
numerator of 1 + G(z), denoted as P(z):

P(Z) = Z2 + Z{K[T--r(l -E)] -(1 +E)}

The closed-loop system is stable if P(z) possesses no zeros
outside the unit circle in the z plane. In the general case, the
determination of whether there is a zero outside this circle
involves extensive effort. but since the polynomial in (6) is a
quadratic and has real coefficients, the necessary and sufficient
conditions for P(z) to have no zeros outside the unit circle are
[91

IP(O)I<1 P(l)>0 P(-1)>0.

These three conditions lead to the following relations:

K[T-E(T±+T)] +E<l (7-1)

(7-2)KT(I -E) >0

2 +2E+K[2r(I -E)-T(1 ±E)] >0. (7-3)

The second condition is satisfied for any positive K, but the
first and third conditions place a bound on the gain. They can
be rewritten in the following form:

1 --E
1 -E-(T/T)E

2(1 +E)
K-r< (T/T)(l ±E)-2(1-F)

(8)

(9)

It is worthwhile to notice that the equivalent continuous
system is always stable. The two boundaries have an inter-

section point at

T 4(1 -E)
T ±+E

(10)

Recalling that E was defined as E e-TfT the intersection
point was calculated to be at T/r = 3.830. Therefore, as long
as TIr ranges from 0 through 3.83, the stability boundary is

given by (8). This boundary is shown in Fig. 3. (The curve

which is corresponded to t = 0.)
Usually T is measured in seconds and K in I/s. But the

practice in NC systems is to presenit K in units of in/min/mil.
Obviously, a K whicih is given in 1 /s must be divided by 50/3
to convert its units to in/rmin/mil.

TIME RESPONSE

The transfer function of the closed-loop as determined
from (5) yields

C(z) G(z)
R(z) 1 + G(Z)

Az ±B
z2 +z(A -1 -E)+B +E

(11)

where

A -K[T-r(l -E)]

(6) B=K[r(I -E) - TE] a
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Fig. 3. Gain versus sampling period for constant damping factors.

The time response is obtained by applying the z transform
tables on (14):

(20)Cn= 1 -e-an T(CoSSnT +M sin wnT)
where

C, describes the output at the sampling instants nT: a and o
are proportional to the damping and the frequency of the
response. The value of oa is determined from (15) and (21)
which yield

ct =--ln (a) = --- E (1 -KT +KT-T LT E

When a unit step is applied to the input, the output transform
is given by

Az +B± z
C(z) = . (12)z2-z(l +E-A) +B +E (z-1)

Equation (12) can be rearranged to

1 1 i -E\-----ln I1-KT+Kr i.2r 2T E\/
(22)

Notice that ca = 0 prescribes a stability condition, which in
turn is identical to the one in (8). The value of X can be deter-
mined from (16) and (17):

z

7-1 z2-z(l +E-A) +B+E

z z(z-a coscT) + zaM sincoT
C(z) = -c .

Z-1 Z2-2Za COS coT+a2

(13)

(14)

(C0 = CO + nir/T

where

1 4Kr-(1 -D)2
(.0 =-tan-1T 1 +E

-D
1-E

and

where

a2 =B +E

n=0, for0 ooT<ir/2

n = 1, for 7r/2 < woT< 37r/2.

cos coT=(1 + E-A)/2a

I

sin cT==±-4a2-(1 ±E-A)2

2a

= + ( -)2/4Kr-'-(1-D)2
2a

D =A/(1-E)

1-E-A 1-D
M= -

2asinwT ±N4Kr--(1-D)2

ly

= (1-D)/2VK7.

The plus sign is used in (1 7) and (19) for 0 < cT < 7r, while
for r S coT< 27r, the minus sign is used.

(16) To compare the sampled-data solution with the well-known
continuous case response, one must substitute the following in
(1 8)424):

T -* ; I1-E= T/r; E= I

(17)
In this case the values ofA andD are zero, and

(18) a = 112r-= tw (25)

where t is denoted as the damping factor and c0n is the natural
frequency defined as \

(19) y = 11/2/K+= = t (26)

M = -, 2 (27)

T (28)

Thus

(23)

(24)

i +E-A I -E-A
z z- +z

2 2
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DRIVE PERFORMANCE CRITERIA

Determining the stability of a sampled-data machine
drive is not sufficient. It is necessary to ascertain the degrE
stability as well as accuracy, and following error, etc. In
eral, to obtain information one must settle on an accept
performance criteria for the system. Five specific criteria
chosen for this investigation and will be presented I
including:

a) the damping factor,
b) the maximum overshoot to a step speed command,
c) the integral of the speed square-error,
d) the steady-state following error.
e) the integral of the absolute-error.

In order to achieve generalization of the curves, the result
plotted on a dimensionless plane of KT versus T/r.

The Dampinig Factor

To define a damping factor in the sampled-data sys
consider the equivalent definition in the continuous
From (25) and (28),

ol=

Jl _42

or

a aT

,,a2 5- \ (ajT~)2 (Co~T)~2

The maximum is obtained for n =1, and the correspondiing
time t is denoted as tmax:

I1j a Wm ±- otma = + tanma
\i aMf+ Xi

The maximum error can be computed by substituting tmax

into (32) which yields

et tM
em ax

= / - tmax
a2 + c2

(34)

Some results of -emax are shown in Fig. 4. Notice that the
maximum overshoot can exceed 100 percent and the system is
still stable.

Thze Integral of the Square Error

The performance criterion under consideration in this
section is

p =}- e2 (t) dt.
f

(35)

(29) Substituting of (32) into (35) and integrating yields

T/r (McT + aT)2
PL=)1

4atT (oaT)2 + (>^,T)2 .
(30)

Equation (30) defines the damping factor of the sampled-data
system, where a and X are given in (22), (23), and (24). The
curves which were obtained for various values of t are shown

in Fig. 3. Obviously, the plot for 0 is identical with the

one obtained from (8).

Mlaximunm Overshoot

In sampled-data systems the maximum overshoot cannot be
determined from a discrete-time equation, such as (20) since
the maximum overshoot may not occur exactly at a sampling
instant. Therefore the determination of the maximum over-

shoot is performed by using the continuous system response
equation for a unit step input

c(t) = 1-e-ot(cos ct +M sin ct). (31)

Obviously c(t) passes through the points of c,. The corre-

sponding continuous error is

e(t) = e-t(cOScost +M sin cot). (32)

The maximum error is determined by taking the first deriva-

tive of e(t) with respect to time and equating it to zero. This

yields

com a

tan (t-n7r) co
aM

(36)

aT and coT are given by (22), (23), and (24). Loci of constant

p have been computed, and the results are shown in Fig. 5.
The most interesting result is that an optimal point exists for
every value of T/r. The locus of these optimal points is plotted
as the optimal curve in Fig. 5.

It is worthwhile to notice that the optimal loci shown in
Fig. 5 present a new design concept which is applicable only to

sampled-data systems. In a second-order continuous system

the equivalent criteria is

min e2(t)dtj = min
1+4m2
4tc,

(37)

which gives a minimum for - 0.5. Notice that in this solution
con is treated as a constant, which means that the ratio K/r
must be constant. On the other hand, when determining the
optimal loci of Fig. 5 for the sampled-data system, no limi-
tations were imposed on the system.

In order to apply the criterion prescribed by (37), we have
to define an wJn for a sampled-data system. By comparing (25)
and (30). an cn can be defined as follows:

cn = a/t2 + c2. (38)

The new criterion will be

mincon e2(t) dt = min {rcop}. (39)

(33)
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Authorized licensed use limited to: University of Michigan Library. Downloaded on August 08,2010 at 11:20:16 UTC from IEEE Xplore.  Restrictions apply. 



KOREN AND BOLLINGER: SAMPLED-DATA DRIVES
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Fig. 4. Gain versus sampling period with maximum overshoot error
as parameter.

2.0
2.4

II
0.25 0.50 075 1.0 1.25 1.50 1.75

T/r

Fig. 5. Loci of square-error integral (no limits on system).

The value of rco,p is calculated from (36), (25), and (38):

nP =- [ (+ - )].

The optimal t which results in a minimum of (-rco,p) was com-
puted, and it has been found that the optimal t is very close to
its continuous case value of 0.5. The locus corresponding with
the optimal t was plotted in Fig. 6. The parameter in Fig. 6 is
rCjnP-

When comparing with Fig. 3, the optimal locus lies slightly
above the line of t = 0.5. This locus provides a very useful tool
for a designer who prefers the integral of the square error as
the significant criterion. The value of the minimal T, or T/r, is
usually prescribed by the processing time of the CNC program.
Once T is known, the value of K may be determined by using
the optimal line in Fig. 6. For example, in a system in which
both the time-constant and the sampling period are 10 ms, the
optimal K is 54 s-1, or 3.24 in/min/mil, and the corresponding
damping factor is t = 0.487.

Steady-State Error

In NC systems the most common input to the described
control loop is a ramp. This input is typical in linear inter-
polation and point-to-point operation. (For circular inter-

Kr

Q25 0.50 0.75 1.0
T/T

Fig. 6. Loci of square-error integral with TWn,p as patameter and
optimal line corresponding with optimal E.

polation a sine input is provided.) For this study, a unity slope
ramp will be used as the input. When a unit ramp is applied,
(20) and (31) describe the speed of the motor (multiplied by
Ke), while (32) describes the speed error, which is of course
zero in the steady state. Similarly, the error discussed in the
latter two sections above is the speed error, multiplied by Ke.
Another significant criterion in such a system is the position
error e, which is determined by integrating (32):

a±+Mu e-at
'±= + a± [(Cl -Ma) sin c,t

Cf2 + CJ2 C12 + Wx2

-(c + Mc) cos wt]. (41)

The steady-state position error contains the first term only.
Since our discussion involves a dimensionless coordinate sys-
tem, the criterion under consideration will be

I 00 T atT + MciT
(40) Es =- J (e(t)dt= aTMwT-

ST 7-e,T (aT)2 + (coT)2

As it is well known in the equivalent continuous system

rEK= K I

(42)

(43)

which means that a zero steady-state error cannot be achieved
in a continuous type 1 servo-system. Fig. 7 shows contours for
constant values of steady state error E, Notice that the position
steady-state error decreases with increasing T. Also, the value
of Es decreases for increasing KT. Thus a zero steady-state
error can be obtained in the sampled-data system. However,
working on the zero-error curve is not practical, since in this
case the system is too close to the unstable zone and the sys-
tem is hunting.

The Integral of the Absolute Error

Minimizing the integral of the square error, essentially
infers an attempt to cut down the large servo errors at the cost
of many small errors. When applying a step function, the max-
imum error occurs just after applying the step. The square
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To obtain the relationship between two sucessive Fn, the
following expressions are derived from (49):

sin wtn = -sin wtn-1
Cos Wtn = -Cos Wtn-1-

Observing (48) and (50), one can see that

Fn = -Fn-1-

Substituting (47) into (46) and using (51) yields

Fig. 7. Gain versus sampling period for constant steady-state errors.

(52)
00

I= -Eo + 2F1 2 e-atnf
n=l

error criterion emphasizes this large error, and consequently
causes a rapid increase of the output. The result is a system

with a relatively large overshoot. Therefore, it is worthwhile to

consider carefully the worthiness of such a design criterion in
feedback control systems. A better criterion might be one in
which any error has the same weight, or in other words, mini-
mizing the integral of the absolute error, I.

The error e(t) is given in (32). The error is zero at times t,n
where tn is the crossing time. Thus the criterion I can be
written as

°° tl t2

I- e(t) dt | e(t) dt e(t) dt
o Ott

t3 tt4
+ e(t) dt- e(t) dt +
D2 n3

Defining
tn

e(t) dt = E(tn)- E(tn-1),
tn-1

(44)

According to (49)

(53)

This permits the using of a geometric progression formula on

(52), which yields

2F,e-at1
1 -e-al

(54)

The trigonometric functions which are required for the cal-
culation of F1 are obtained from (49):

sin wt1 = 1/N1M2

cos wt1 =-M/v 1 +M2 (55)

Using the last equations, F1 can be calculated:

F, = w2
(45) Ci2 + W^2

(56)

Eo is equal to Fo, and obtained by substituting t = 0 in (48):

(44) can be written as

I = -E(O) + 2[E(tl) -E(t2) + E(t3) --]

Values of E(tn,) can be obtained by using (41):

E(tn) =En =Fne-atn (4

where

Fn = (c -MMa) sin wtn -(a + Mc) cos cotn I
at2 +W2

The values of tn are calculated directly from (32):

a + Mco

(46)
Eo =-

a2 C2
(57)

To summarize, the integral of the absolute error is given
by (54), where Eo, F1 and t, are given in (57), (56), and (49).

k7) respectively. For the particular case of a continuous system,
the values of a,M and co are given in (25), (27), and (28). Sub-
stituting these values yields

(58)

(48) M is given in (27) and a = tan'(-l/M) + rr. The minimum
value of (Iwon) found by computer solution is 1.605, and is

obtained for a damping factor of

Ctn = tan-1 (-I/M) + n7r,

Kr

(so)

(51)

260

atn = a tn 1 + aIT/Ci.

n = 11 213. ---. (49) . = 0.662.

2 e-M a

I=- t+
Wn I- e-M ir-
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The resulted maximum overshoot is 6.2 percent. As was men-
tioned above that the square-error criterion prescribes t for the
continuous case which results an overshoot of 16.3 percent.

The optimal t which results a minimum of (Icw1,), was com-
puted for the sampled-data system. The locus corresponding
with the optimal t is plotted in Fig. 8.

The values of Iwn the damping factor, and the percentage
overshoot are almost constant along the optimal locus. In the
range 0 < T/r < 2 they vary as follows:

2.00 < T/-< 0

0.65 < t <0.66

6.8 percent > percent OS > 6.2 percent

1.55 <ICOn < 1.61.

On the other hand, the settling time and the position steady-
state error increase with increasing T. The time correspondence
to the first overshoot, tma,, was calculated from (34). The
values of (tmaxlT) and the steady-state error as well as the
values of Kr along the locus are given in Table I. The integral
of the absolute error (IAE) seems to be the most suitable cri-
terion for servo design and will be used henceforth in the
design procedure.

It might be of interest to point out that the IAE criterion
takes into account the two contrary design requirements of
servo systems, namely small overshoot on the one hand and
minimum position error on the other hand. The term Eo of
(54) is the steady-state position error, as can be seen by com-
paring (41) and (57), and the maximum overshoot, (34), pro-
portional to the term F1.

Repeating the example of a system in which both the time-
constant and the sampling period are 10 ms, and using Fig. 8,
an optimal K of 36 s-1 is obtained. The maximum overshoot
in this case is only 6.5 percent compared with 17.2 percent
and 34.3 percent obtained when using the optimal lines of Fig.
6 and Fig. 5, respectively.

FREQUENCY RESPONSE

The sinusoidal behavior of the system is obtained by substi-
tuting z est and replacing the Laplace operator s by jIr (,r

Fig. 8. Loci of integral of absolute error with optimal line correspond-
ing with its optimal t, and bandwidth parameter given along line.

TABLE I
DATA ALONG OPTIMAL ABSOLUTE ERROR LOCUS

T KT t-maxf:lcdt Ef
_ T T_

0 0.57 5.56 1.75 0.129

0.25 0.50 5.94 1.88 0.119

0.50 0.44 6.35 2.01 0.110

0.75 0.40 6.75 2.13 0.104

1.00 0.36 7.14 2.25 0.097

1.25 0.34 7.55 2.36 0.092

1.50 0.31 7.96 2.47 0.087

1.75 0.29 8.33 2.57 0.083

2.00 0.27 8.71 2.66 0.079

P2 = cos 2wrT;

S, = sin wrT;

S2 = sin 2corT.

Q =A -1 -E;

(Note that z = PI + jSj and z2 = P2 + jS2.)
Equation (59) contains gain and phase information. Usually

the main concern is the gain, which is determined by the abso-
lute value of M, given by

(60)!Ml=
A2+B2+2ABP1 1/2

-(B+E)2 +Q2 + 1 +2[(B+E)P2 +(B+E + 1)QPII]

is the circular frequency) in the system transfer function. For
the transfer function given by (11), this yields

C AP,+B+jAS,M=-= (59)
R P2+QP1+B+E+j(S2+QS1)

where

Bearing in mind that B + E + Q + 1 = A + B, (60) can be
rewritten as

(61)M(A + B)2 + 2AB(P1l-1) 1/2M=
(A + B)2 + I2G(Pl - 1)

where

G=(B+E+ I)Q+2(B+E)(Pl + 1).

261

P, =cos w,T; (62)
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The bandwidth is the characteristic of the frequency
response which is of most interest. The bandwidth is the fre-
quency range from zero through fo, where the cutoff frequency
fo is ordinarily defined as the frequency in which the gain
decreases by 3 dB, compared with its dc value. Following this
definition, the cutoff frequency is found by equating Al to 0.7.
Since P2 -2P12 - 1, a quadratic equation is obtained. The
value of (rfo) was calculated along the minimum absolute-
error line, and some results are given in Table I.

Sinusoidally varying inputs are fed into the control loops in
a CNC system whenever a circular interpolation is required. The
maximum angular velocity depends on the maximum required
feed-rate, Fm in in/min, and on the minimum permitable
radius of cutting rm in inches:

Wm = Fm /60rmr. (63)

By substituting the values of A, B, and G into (66), one
obtains

er L

r T2

where

K(T + 27r) -
L=

K2

(67)

(68)

By substituting (64) into (67), the maximum permitted wr,
denoted as crrm, is obtained as a function of K, T, and T.
Some results of [l00'TWrm] are summarized in Table II and
are also given as a parameter along the optimal line of the
absolute-error in Fig. 8. Obviously, the system designs must
meet the requirement

As limits, consider a typical maximum feed-rate as 60 in/min
and a minimum radius of 1 in, which yields co,, = 1 rad/s. A
gain decrease of -3 dB (30 percent error) as the definition of a
bandwidth can not be applied in NC controls. When cutting a
circle, the error er in the radius r is not allowed to exceed one-
half of the resolution in the entire range from dc through ,m.
The bandwidth of the system depends on the maximum rela-
tive error (erir). For example, if the resolution of the system is
10-4 in, the maximum relative error, for a minimum cutting
radius of 1 in is

er
-= 5.10-5. (64)
r

When cutting along a circle with larger radius, 0rn decreases
causing the produced error er to decrease with wOn2, as will be
shown later. On the other hand, a circle with a radius smaller
than 1 in is produced with reduced feedrates and, in addition,
the permitted relative error (erir) is allowed to be greater than
0.00005. Therefore, the requirement prescribed by (64) is
realistic for NC applications.

The contour errors in circular cutting in the continuous
case were investigated in [10] for various values of t. It has
been shown in [10] that the steady-state relative error in the
radius is

rM < Wrm- (69)

Using a further approximation of P1 1 -(WrT)2 /2, (67) is
reduced to

er L 2
r 2 (70)

showing the parabolic relationship between the error and wr
for small errors.

The main result of this section is (67), which by substituting
(64) and (68) gives the useful bandwidth for sinusoidal inputs.
The 3-dB bandwidth fo, which was calculated at the outset, is
useful as a number to characterize the disturbance rejection
ratio, especially when the axis is not in motion but is subjected
to torque disturbances due to the cutting action of the other
axes.

DESIGN PROCEDURE

The position loop gain can be determined by using a for-
mula recommended by [11, pp. 5-41

K
1 units/min 1

50ro0 milliunits
(71)

r-1IM
r

(65)

By substituting (61) into (65), the relationship between co
and (erir) is obtained. For very small error, cr is also small.
and the following approximations are allowed:

P1 + 1 2

M2 _- I - 2(er/r).

This yields the equation

(AB-G)(l -P1) = (A + B)2er/r.

where r0 is the naked system time constant in seconds. In a

dimensionless format. (71) is written as

KTo = 1/3 [dimenlsionless]l (72 )

Assuming that the time constant of a loaded systenm is

about 1.5 to 2 times greater than the one of a naked system,
we see that the recomimendation is a system design with Kr

between 0.5 ( - 0.71) to 0.67 (Q - 0.61). Using the IAE cri-

terion, prescribes Kr - 0.57 for a continuous system, which is

within the recommended range.
When the same system is applied to CNC, the new param-

eter T must be chosen. The minimum value of T depends on
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TABLE II
BANDWIDTH ALONG OPTIMAL CURVE

T/T KT 100TW m

0 0.567 1.52

0.25 0.499 1.42

0.42 0.460 1.37

0.50 0.443 1.35

0.75 0.400 1.26

0.90 0.378 1.22

1.00 0.365 1.18

1.25 0.336 1.11

1.50 0.312 1.03

1.63 0.300 1.00

1.75 0.29 1 0.96

2.00 0.274 0.89

the processing time of the CNC program; the maximum value
depends on the required bandwidth. Let us define the band-
width parameter of Table II by B, i.e.,

B = 100TlOr,.m (73)

Table II was derived for a minimum radius of 1 in. Using
the data in (63) provides the relationship between the band-
width and the maximum feed-rate in in/min:

TFm = 0.6B (74)

where r is in seconds. Since r and Fm are known, B can be
determined. T/r is found either by using the calibration along
the optimal line in Fig. 8, or with the aid of Table II.

For example, for Fm = 60 in/min and r = 10 ms, the value
of B, as derived from (74), is 1. The corresponding value of
Tir, as found from Table 1I, is 1.63, which means that T =

16.3 ms, or a minimum sampling frequency of 61 Hz. Assum-
ing that a sampling period of 1 5 ms was chosen for this sys-

tem, the optimal gain, as determined from Table II, is

0.312 in/min
Ko = = 31.2 s-1 = 1.87 (75)

Ir mil

The corresponding time response is given in Fig. 9(a)1; the
calculated overshoot is 6.7 percent. Notice that the value of r

prescribes a limit on Fm. In the continuous case, the limit, as

derived from (74) and Table II, is

TFm = 0.91. (76)

In the sampled-data case, the minimum value of T must be
used to determine this limit.

Since the relationship between K and T has been originally
derived here, let us assume that the designer wishes to meet
the requirement of a continuous system, i.e., KT ranges

between 0.5 to 0.67. In order to overcome the sampling influ-

1 The control computer is SDS 930 of the DASL Laboratory.

0 .1 2 .3 t [sec]

(a)
O .1 .2 .3 t [sec]

(b)

Fig. 9. Time response of sampled-data system with 15-ms sampling
period and 10-ms time constant. (a) K,. = 0.3. (b) KT = 0.5.

ence, the designer will probably choose the smaller value of
0.5, which yields a K of 50 s-1. The corresponding time
response is given in Fig. 9(b), and the calculated overshoot is
23 percent. Notice that according to [1 1 ], "Overshoot of over
20 percent could result in unsatisfactory servo performance."
The ratio between 23 percent and 6.7 percent does not depend
on the value of T. For example, for T = 20 ms and Fm = 30
in/min, the optimal gain is 15.6 s-1 as derived from the
requirement Kr = 0.5, yielding the ratio of 6.7/23 in the
overshoot.

CONCLUSIONS

A sampled-data control loop for CNC machine tools has
been analyzed, and the relation between the loop gain and the
computer sampling rate has been derived. Different criteria
were investigated in order to find the optimum performance.
The integral of the absolute error has been chosen as the most
useful approach, and its optimal curve was calculated. In order
to find the optimal point on this curve, the relationship
between the maximum feedrate in circular interpolation and
the sampling period was inferred from the system bandwidth.
This provides the control engineer with a systematic design
procedure for the selection of system parameters.
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Basic Operating Characteristics of a High-Frequency Inverter
with Capacitive Voltage Multiplier

NICOLAE D. LUDU

Abstract-The integrodifferential equations of the equivalent circuit
are solved, and the operating characteristics are derived for a current-
fed thyristor inverter. This inverter can be especially useful as a high-
frequency power source for induction heating.

INTRODUCTION

THE MODERN induction heating and melting plants are
Tequipped with solid state high-frequency SCR inverters.
These static inverters have several advantages over the classical
motor-generator sets, such as higher efficiency, small space
and weight, simpler installation, quieter operation, and no
maintenance.
A good number of high-frequency inverters have been

already treated in literature [1] -[11]. Thus the voltage-fed
inverter is discussed in [7], [8] and the current-fed inverter is
discussed in [3] and [5] . A comparative examination between
voltage-fed and current-fed inverters is presented in [4] and
[10]. Some features of the inverter with capacitive voltage
multiplier are disclosed in [6]. This is a current-fed inverter
which can operate under load-voltage amplitude greater than
thyristor-voltage amplitude.

Paper approved by the Static Power Converter Committee of the
IEEE Industry Applications Society for publication in this TRANS-
ACTIONS. Manuscript released for publication March 30, 1977.

The author is with the Department of Switchgears and Converters,
Bucharest Polytechnic Institute, Romania.

The original contribution of the present paper is to perform
a steady-state analysis of the current-fed inverter with capaci-
tive voltage multiplier and to derive its basic operating charac-
teristics. The results obtained are presented both analytically
and graphically as a function of load and output frequency
changes. These results permit a deeper understanding of the
inverter behavior and can be used by the designer to select the
optimum circuit components.

Tests were carried out by means of a laboratory inverter in
order to experimentally verify the operating characteristics.

I. BASIC INVERTER CONFIGURATION
AND EQUIVALENT CIRCUIT

The basic schematic of the current-fed bridge inverter with
capacitive voltage multiplier is shown in Fig. 1. The load is
represented by the equivalent load resistance R and the equiva-
lent load inductance L. As compared to the basic current-fed
inverter [3], the inverter shown in Fig. 1 includes a capacitor
C1 connected in series only with the load R - L. As will be
seen, the capacitors C and C1 operate as a capacitive voltage
multiplier. This means that the peak value of eL (see Fig. 1)
will be larger than the peak value of e, and accordingly, the
SCR blocking capability could be more conveniently used. For
larger load voltages, this major advantage of the current-fed
inverter with capacitive voltage multiplier over the basic cur-
rent-fed inverter permits the avoiding of SCR series techniques.

0093-9994/78/0300-0264$00.75 © IEEE 1978
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