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The Optimal Locus Approach With 
Machining Applications 
An optimal locus concept is introduced as the basis for an optimization 
methodology for real-time control subject to time-varying constraints. The optimal 
locus in the control plane contains all possible optimum points, and the actual point 
is found at the intersection of the optimal locus with the most limiting constraint. 
The mathematical basis of the approach is a given set of equations which is less than 
the number of unknowns, and the addition of real-time measurements to compen
sate for the missing information. The control system generates the optimal 
parameters in real time, and uses them as references to the control loops. The op
timization methodology and control architecture are structures in a generalized way 
for application to processes having multiple variables and subject to several con
straints. The proposed controller architecture can effectively control many machin
ing processes. The optimal locus approach was applied to a grinding system and the 
experimental results verify the proposed theory. 

1 The Evolution of Control Systems 

World War II was a milestone in the development of control 
theory. The major theme of this new discipline in the forties 
and fifties was the concept of feedback to assist in producing 
desirable responses of processes. In the early sixties, the op
timal control theory was developed. By including the required 
specifications in a performance index, optimal control was 
used to solve the control problems by applying mathematical 
methods to optimize a performance index [1-4]. 

Many control systems suffer from inadequate performance 
because of inaccurate modeling of the controlled process or 
because it changes outside the range of compensation of a con
ventional feedback controller. To remedy this situation, con
trol research in the late sixties and early seventies was directed 
toward the development of methods for on-line estimation 
and identification of processes [5-7]. The main idea behind 
these methods is the on-line improvement of the knowledge of 
the model of the process. Some attempts have been done to 
apply this theory to cutting processes [8, 9], but it has never 
been applied to practical systems. In parallel to the research in 
process identification, adaptive control was developed to treat 
situations where uncertainties in the process are a factor in the 
design of the controller [10, 11]. Adaptive control was also ap
plied to machining processes [12-14], and when combined 
with model estimation techniques demonstrated satisfactory 
results in research laboratories [15, 16], 

Adaptive control and on-line identification can be con
sidered as the first step toward self-learning [17, 18] and in
telligent control systems. Learning systems have been defined 
to represent processes in which dynamic accumulation of in
formation takes place in order to improve the understanding 
of the process and make decisions [18-20], Intelligent control 
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would replace the human judgment in making decisions (e.g., 
type and level of control variables), planning control 
strategies, and learning new functions by training other in
telligent functions [21]. 

The control of machining processes has not followed the 
same evolutionary stages of general control systems. Although 
real-time estimation techniques and sophisticated adaptive 
control systems were demonstrated in research laboratories 
for milling and turning, they have not been applied in practice. 
Simple feedback loops are used in most CNC systems. Even 
in the most advanced CNC systems, the part programmer still 
determines the machining parameters, such as feed and cutting 
speed. An improved system would be one in which the optimal 
values of these parameters are generated in real time by the 
controller according to the behavior of the machining process, 
and subsequently used as velocity references in the control 
loops. Once the system is initialized, at any arbitrary operating 
point, it should automatically converge toward the best 
operating point which guarantees optimal control of the pro
cess. Such a controller is defined here as an intelligent machin
ing controller (IMC) since it replaces the human judgment in 
making optimal machining decisions. The purpose of this 
paper is to introduce the concept of the optimal locus which is 
the basis of the IMC architecture. 

2 Conventional Calculation of an Optimal Machining 
Point 

From the literature dealing with economics of machining 
processes (e.g., [22]), a cost function is usually formulated as: 

01=C,f+(C2-r-C1f1)'/r (!) 
where 

</>! = cost to remove volume V needed to produce a part ($) 
Cj = cost of machine and operator per unit time ($/min) 
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t, 

cost per cutting edge or regrind per change ($) 

machining time per part (min) 

tool changing time (min) 

T = tool life (min) 

For rectilinear turning, for example, t = irDL/vf'where D and 
L are the workpiece diameter and length, v is the cutting speed 
a n d / i s the feed. A general definition of t is the time needed 
for removing a volume of material for one part, V, in which 
case </>[ is determined by t = V/V(m turning V = vfa, where a 
is the depth of cut). By dividing $, by a constant value, (e.g., 
•KDLCX in turning), a more convenient cost function is obtain
ed 

->T) (2) 

where T is a constant 

T = tx+C2/Cx (3) 

Optimizing the process for minimum cost generally requires 
finding the operating parameters (e.g., v and / in turning) 
which will minimize 4> subject to constraints on their allowable 
values. 

If the optimization criterion is the minimum production 
time rather than cost per unit, the same approach is used but 
with T = tl in equation (2), namely, the cost of the tool C2 is 
neglected in this case. 

In milling and turning, a maximum feed (fx) constraint is 
usually active, namely, 

Mfx (4) 
The constraint on the maximum feed may be dictated by such 
factors as the required surface finish or the limiting cutting 
force. 

With the conventional economic analysis, / = fx and the 
Taylor's tool life equation 

Tv" = C0; n>\ (5) 

are substituted into equation (2), and the optimal cutting 
speed v0 is obtained by setting the first derivative of <f> with 
respect to v equal to zero. This yields 

"o=[ ,C° u]1/n ^ 
L T ( H - I ) J 

However, equation (5) is only an approximate representa
tion of data points, for limited values of v and/ , and therefore 
the obtained v may not be very accurate especially if the per
missible operating region of v a n d / i s large. 

3 The Optimal Locus Concept 

From the optimal control viewpoint, many machining op
timization problems may be characterized as follows: 

1 A performance index in a form of a cost function (e.g., 
equation (1)). 

2 Two control variables (a control variable is identical to a 
machining parameter, and can be the feedrate, the cutting 
speed, etc.). 

3 Fixed constraints on the control variables (e.g., equation 
(4)). 

4 Constraint(s) depending on both control variables, as well 
as on a state variable which varies with machining time and is 
inaccessible to in-process measurement (e.g., tool wear). Such 
a constraint is defined as a varying constraint. 

5 A measurable output variable(s) which can indicate a 
violation of the varying constraint(s). 

Examples of varying constraints are the maximum 
allowable machine power in milling (depends on the cutting 
speed), the force which breaks the tool in turning (depends on 

the feed and wear), or the power causing workpiece burn 
(thermal damage) in grinding. The corresponding measurable 
output variables are the machine power, the cutting force, and 
the grinding power, respectively. In this section the general 
analytical approach of the optimal locus is introduced, while 
the next section shows how the optimal locus approach can be 
applied to machining. 

The optimization problem with one varying constraint can 
be stated as follows: Minimize (or maximize) the cost function 
4>(u, v) subject to the varying constraint P(u, v, x) < 0, 
where u and v are the control variables and x is an inaccessible 
state variable. 

The solution might be divided into two cases: 
A. The optimal control point is not on the constraint, 

namely P < 0. The solution is obtained by solving the equa
tions 

du 
= 0; 

d<f> 

~dv~ 
= 0 (7) 

The solution of this case is straightforward, but in machining 
applications, it rarely occurs. If only one fixed constraint is ac
tive (e.g., equation (4)), the solution is given by one of the 
equations in (7). 

B. The optimal point is on the varying constraint, which, in 
turn, becomes an equality constraint P = 0. In this case the 
optimization problem can be solved by using the Lagrange 
method as follows. First we define the Lagrangian 

L(u,v,x)=4>(u,v) + \P(u,v,x) (8) 

where X is the Lagrange multiplier. We now adjust u and v 
such that L is a maximum (or minimum) for each particular 
value of x. This requires that 

dL _ d<t> 

~du~ 

and 

dL 

~dv" 

dL 

"ax 

du 

8<t> 

~~dv~ 

- + X — = 0 
du 

(9) 

, dP n + X — = 0 
dv 

= P(u,v,x)=0 

(10) 

(11) 

Eliminating X by combining equations (9) and (10) yields 

dd> dP dd> dP 
- ^ - , 7 ^ - r - = Q(u,v,x)=0 (12) 

du dv dv du 
For any particular x, the solution of equations (11) and (12) 
provides the optimal point u0, v0. The collection of all these 
points in the Mf-plane is the optimal locus. Its equation 

l(u,v)=0 (13) 

obtained by substituting x from equation (11) into (12), is in
dependent of the inaccessible state x\ This fundamental op
timization equation of the controlled process, is the basis of 
the Intelligent Machining Controller. The solution for an op
timal point is obtained analytically by solving equations (11) 
and (13), and graphically by finding the intersection between 
the constraint P(u, v, x) = 0 and the optimal locus /(«, v) = 
0. 

The following example, although having no physical mean
ing, clarifies the analytical approach of the optimal locus. 

Example: Minimize the cost function 

4>=(u-\)2 + (v-4)2 (14) 

subject to the fixed constraint 

5 > « > 0 (15) 

and the varying constraint 

P = xv-u-l<0 (16) 

where x varies in the range 20 > x > 0.2. 
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Fixed 
Constraint 

- 1 1 3 5 

Fig. 1 An example of a calibrated optimal locus 

- 1 1 3 5 

Fig. 2 Optimal locus calibrated in Pc units 

A. First the unconstrained problem is solved. According to 
equation (7) the solution is «0 = 1, i>o = 4. Substituting these 
values into (16) yields x < 0.5, which means that in the range 
0.5 > x > 0.2 the varying constraint (16) is not active, name
ly, xv0 - K0 - 1 < 0. Therefore, for x in this range the optimal 
operating point is (1,4). 

B. For an active varying constraint, equation (12) in this ex
ample becomes 

( « - l ) x + ( y - 4 ) = 0 (17) 

Eliminating x by combining equation (17) and the equality of 
(16) yields the equation of the optimal locus (i.e., equation 
(13)) 

u2 + (v-2)2 = 5 (18) 

The optimal locus and the constraints for this example are 
shown in Fig. 1. The optimal locus is calibrated in x values. 
For x < 0.5, the constraint is not active and the optimal point 
is fixed at (1,4). For *>0.5 the optimal point is at the intersec
tion of the constraint and the optimal locus. 

In many practical cases the varying constraints are com
posed of two components 

P(u,v,x)=Pc(u,v,x)-Pb(u,v)<0 (19) 

where Pc is the dynamic component of the constraint which is 
affected by an inaccessible state variable, and Pb is a cor
responding measured variable. The strength of the optimal 
locus approach is in cases where the inaccessible state variable 
strongly varies as the process progresses. 

For example, let us assume that the loading torque on a DC 
motor, which drives a robot joint, gradually varies because of 
the changing inertia 

T=[J0+xU)]S> (20) 

where x represents an inaccessible variable which depends on 
the motion of the other axes. The motor speed to, which also 
varies, is measured with a tachometer. The maximum torque 
{Tm) and speed of the motor are limited. The maximum power 
that can be delivered by the motor is 

Pb = oT„ (21) 

and since co is measured, Pb can be continuously calculated. 
The actual power (the corresponding variable here) is 

Pc = wT(x) (22) 

where T is given in equation (20). The power Pc is measurable 
in real time, and the varying constraint is Pc < Pb or 
P c - P 6 < 0 . 

To obtain the optimal locus, the variable P in equations (11) 
and (12) may be substituted by Pb and Pc from equation (19), 
which yields 

Pc(u,v,x)=Pb(u,v) (23) 

and 

<t> /dPb dPc\_ 

u \ dv dv ) 

d<t> (dPb 

dv V du 
dPc\ 
du / 

(24) 

The optimal locus equation l{u, v) = 0 is obtained as before 
by eliminating x from equations (23) and (24). Conceptually, 
the pair equations (11) and (12) is equivalent to equations (23) 
and (24). The latter, however, lays the ground for the im
plementation of a real-time optimal controller. 

The strength of the optimal locus approach is in cases where 
Pc can be measured in real time. Since the intersection be
tween Pc = Pb and l(u,v) = 0 provides the optimal point, the 
locus can be calibrated in Pc units and subsequently stored in 
the control computer. The actual value of Pc is then used to 
retrieve the optimal point in real time. Variations in the state 
variable x are sensed indirectly through the measurements of 
Pc, and the resultant optimal point is automatically adapted to 
the process variations. Conceptually, the optimal locus ap
proach is a general method which compensates for the absence 
of knowledge on a process state x by measuring a corre
sponding variable Pc that is a part of a related constraint. 

To further explain the method let us assume in the above ex
ample that 

Pb = ll + u-4v (25) 

and 

Pc=xv+l6-4v (26) 

Substituting values of x and v that are on the locus into equa
tion (26) permits its calibration in Pc units, as shown in Fig. 2. 
Equation (18) with the Pc calibration is stored in the com
puter. A subsequent measurement of the value of Pc in real 
time enables the automatic retrieval of the optimal points u 
and v. 

If the model in equation (26) has an uncertainty of the form 

Pc = mxv+ 16 — Av 

where m varies in the neighborhood of m = 1, the optimal 
locus given by equation (18) is still correct for this example, 
and only its calibration changes. However, if Pc is monitored 
in real time, the exact optimal point will be retrieved despite 
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the variations in the model. This is, however, a very favorable 
example. In the general case modeling uncertainties might 
cause operation in the neighborhood of the optimal point, but 
still the optimal locus approach always guarantees better 
results than off-line optimization methods. 

The optimal locus approach can be extended to deal with 
more than two control variables, and also to cases in which </> 
is a function of x. However, these cases are not typical in 
machining and will complicate the architecture of the machin
ing controller which implements the proposed optimization 
method, and therefore are not discussed here. 

4 The Optimal Locus in Machining 

Varying constraints of the type 

P = Pb(vJ)-Pc(vJ,x)>0 

are frequently imposed in machining. Here v and /a re defined 
as two general machining parameters, Pb is a physical limit, 
and Pc is its corresponding measurable variable. For example, 
i f / i s the feed in turning, Pb can be the tool breakage force 

P„=Kf (27) 

and then Pc is the measured cutting force; or Pb can be the 
maximum power of the machine 

Pb=Kvf> (28) 

where/is the feed and v is the cutting speed, and then Pc is the 
actual machine power; or Pb can be the burning power in 
grinding [23] 

Pb=Kif+K2{vf)> (29) 

with v being the speed a n d / t h e radial infeed, and then Pc is 
the actual net grinding power. 

In order to apply the concept of the optimal locus, the cor
responding variable must be known or measured in real time. 
In the general case the corresponding variable depends on / 
and v, and a state variable. For example, in turning [24] 

Pc=Kj*-Cvv+CwW (30) 

where W, the width of the flank wear, is the inaccessible state 
variable, and K, q, C„, and Cw are constants. 

To solve the optimization problem with the varying con
straint, the Lagrange multipliers method with the equality 
constraint P = Pb— Pc = 0 is applied. Using a Lagrange 
multiplier X, the optimization problem becomes one of ex-
tremizing the function 

L = $ + \(Pb-Pc) (3D 
where <f> is given in equation (2). As in equations (9) to (11), the 
necessary condition is for the partial derivatives of L with 
respect to v,f, and A to vanish, which leads to 

a(logr) _Xv2f(d
pb dp-

1 + T [ - d(logy) 

l+1_r awn 
T L d(logy) 

dv 

-\fv(-
\ df 

dv 

fdPb SPA 
df J 

(32) 

and 

(33) 

(34) Pb=Pc(x) 

Eliminating X by combining equations (32) and (33) yields the 
particular case of equation (12) for milling, turning, and drill
ing: 

dlogT\-\/dPb dPc\ 

J\\ df df ) K(<+-dlogu df df. 

dlog7\ 
1 +Tl'+aw )](£"£)• « 

The optimal locus equation is obtained by substituting x from 
equation (34) into (35). However, for particular cases in which 

dPc/dv and dPc/dfare independent of x (see example below), 
equation (35) is the optimal locus equation. The optimal 
operating point is determined either analytically by solving 
equations (34) and (35) (or equation (34) and the locus equa
tion) for / and v, or graphically by finding the intersection of 
the optimal locus with the constraint (34). 

The optimal locus approach establishes a science-base to in
telligent machining and new design approach of machine tool 
controllers. This statement is supported by the following: 

1 The approach is general and fits a variety of different 
processes which might be subject to constraints of different 
types. The strength of the approach is the independence of the 
optimal locus equation from unmeasurable state variables. 
The effect of these variables on the optimal point is inserted 
through measured variables related to the constraints. 

2 No specific tool life equation is assumed and therefore 
any type of tool failure can be considered. It might be thermal 
damage in grinding [23]; or tool wear or breakage in milling, 
turning, and drilling, (e.g., [25]); or it might be attributed to 
both wear and breakage [26-29]. Since no single mode of tool 
failure can account for even the majority of failures [30, 31], 
introducing an approach which mathematically accom
modates various failures is significant. 

3 Two distinct modes of tool failure might be 
mathematically accommodated, one by the cost equation and 
the other by the constraint. For example, the tool life in the 
cost equation can be defined by the width of the flank wear, 
and the varying constraint will protect the tool from breakage. 

4 A constraint might be given as a function of the machin
ing parameters and a state variable, thereby becoming a vary
ing constraint, which varies as the process proceeds. For ex
ample, the power in grinding increases as the grinding wheel 
becomes dull (large effective wear flat area) [23, 32], With the 
proposed approach this can be automatically compensated by 
a shift on the optimal locus and operating with smaller 
workpiece speed and infeed velocity [33]. 

5 Although the approach was demonstrated with one vary
ing constraint, it can be expanded to any number of con
straints, a case in which X in equation (8) becomes a vector 
rather than scalar. An example with two varying constraints 
(burning power and surface finish) can be found in [33]. 

6 A variety of optimization criteria might be set, depending 
on the definition of the constant r. Minimum cost per part 
(equation (1)); maximum production rate (T = t^), or a value 
{tl < T < tl + Cj/C^ for maximum profit [34]. 

7 The optimal locus approach assumes variables which can 
be measured in practice (e.g., power or cutting force), and 
therein lies the grounds for real-time intelligent controller. 

5 The Intelligent Controller Architecture 

The architecture of the intelligent machine controller (IMC) 
is based upon the optimal locus theory which was previously 
introduced, and is presented in Fig. 3. The use of the term 
"intelligent" is justified if a controller replaces the human 
judgment in making decisions [21], which happens at the IMC 
regarding the determination of the optimal machining 
variables. The "optimal locus algorithm" in Fig. 3 is based on 
the optimal locus equation, and the "calculated constraint" is 
the Pb equation. The varying constraint is represented by three 
parts: the calculated Pb, the measured Pc, and the software 
comparator. The system starts to operate at an arbitrary small 
/ , and the counterpart v is determined in real time from the op
timal locus equation. The pair v and / are transmitted as 
references to the control loops, and also used to calculate the 
Pb portion of the constraint. The new Pb is compared with the 
measured Pc, and the error e is used to generate a corrected 
value/(with the aid of a PID, or other controller). The system 
quickly converges along the optimal locus curve toward the 
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Fig. 3 The Intelligent machining controller (IMC) 

20% 
" Noise 

Fig. 4 Convergence to an optimal point with no-noise and 20 percent 
measurement noise, (a) The control variables, (b) the constant Pb and 
the measurement Pr. 

Fig. 5 Convergence to a time-varying optimal point, (a) The varying 
parameter, (b) the control variables, (c) the constraint and the 
measurement. 

optimal point. The integral component in the PID controller 
guarantees that at steady state Pb = Pc, namely equation (34) 
is satisfied. If during machining Pc varies (e.g., because of 
tool wear), the operating point moves and the calculated Pb is 
shifted as well; the system will stabilize at a new point on the 
optimal locus. 

From control theory viewpoint the IMC has an interesting 
structure: The references to the control loops are not supplied 
by external sources. All the references (i.e., v, / , and Pb) are 
internally generated, namely, the system possesses enough 
"intelligence" to know the desired values of the references 

and to modify them as the cutting progresses. Such a system is 
being defined as an intelligent machining system. 

Example. The proposed control architecture has been 
simulated on the process given in Section 3. The optimal locus, 
the constraint portion Pb, and the measurement Pc are given 
in equations (18), (25), and (26), respectively. 

First the designer must select an input variable(s) to the 
locus algorithm. In this example each v has a unique positive u 
counterpart, but u might have two positive solutions for v. 
Therefore, v is selected as the input variable to the locus 
algorithm, and the counterpart u is calculated from equation 
(18). Notice that equation (18) is valid only at a limited region, 
as shown in Fig. 1, and the locus is not a full circle. Next, a 
loop controller algorithm should be selected. It must include 
an integral action, since at the steady state the objective is to 
obtain Pb=Pc. The algorithm in this example is 

v(i+l) = v(i)+k(Pb-Pc) 

where k = 0.6. This value was found by trial-and-error; larger 
values (e.g., k = 0.9) provide larger errors of the parameters 
at the steady state; smaller values (e.g., k = 0.2) increase 
substantially the number of iterations without significant im
provement in the accuracy. 

The next step is to decide upon an initial operating point. To 
eliminate constraint violations this point must guarantee Pb > 
Pc for any value of x. In this example, at the intersection point 
of the lower constraint with the locus (t> = 0.109, u = 1.194) 
the condition Pb > Pc is always satisfied (see equations (25) 
and (26)), and therefore it is selected as the starting point. 

In the first simulation we assume that the process state 
varies very slowly compared with the convergence rate of the 
optimal locus algorithm, and therefore x is a constant during 
the transient period. The process was simulated with x= I; the 
analytic solution is v = 3, u = 2, andP 6 = Pc = 7. As shown 
by the thick lines in Fig. 4, after three iterations the errors in u, 
v, and Pb are less than 4 percent, and after five iterations less 
than 0.5 percent (compared with the analytic solution). At 
each iteration the operating point is on the locus, and 
therefore the condition Pb > Pc is satisfied along the con
vergence trajectory. That means that the optimal locus ap
proach also provides a convergence strategy that eliminates 
constraint violations. 

When 5 percent random noise (a practical number) is added 
to the measurement Pc, the resultant errors are so small that 
they can not be depicted graphically (the graphs actually coin
cide with the thick no-noise lines). The results of adding 20 
percent noise are shown in thin lines in Fig. 4 {Pb is not shown 
for this case). The process continues to operate in the 
neighborhood of the optimal point, and the measured con
straint violations (not depicted) are smaller than 2 percent. (In 
actual system violations do not occur since the noise is 
filtered.) 

The simulation results of a time-varying process are shown 
in Fig. 5. Here, the value of x is gradually changed from x= 1 
to x=0.52. The control variables u and v track the analytic op
timal solution with error smaller than 3 percent (after 4 itera
tions), and the constraint is never violated. Constraint viola
tions are eliminated since the convergence trajectory is the op
timal locus itself, as shown in Fig. 6 for the first 14 iterations. 

6 The IMC in Grinding 

The optimal locus approach was applied to an operating ex
perimental grinding system [35], The two controlled grinding 
parameters are the surface speed ;;„, (or alternatively the 
workpiece spindle speed nw) and the radial infeed/(or alter
natively the infeed velocity v), and the varying constraint is the 
burning power Pb. In theoretical analyses the pair (vw, f) is 
usually applied, but in practical systems nw and v are the ac-
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Fig. 6 Convergence trajectory along the optimal locus 

tual control variables. Based on the approach presented here, 
optimal loci for grinding were obtained (see Fig. 7) and stored 
in the computer. Measurements of the grinding power Pc are 
fed from the grinding machine to the computer, and the com
puter, in turn, controls the parameters v and nw to operate 
along the optimal locus and converge toward the optimal 
working point. 

The experimental intelligent grinding system is shown in 
Fig. 8 [35], The workpiece spindle is driven by a dc servomotor 
in the continuous range 0.4 to 63 r/s. For controlling the 
radial infeed velocity v, a stepping motor drive was attached to 
the infeed control handwheel of the machine. A Hall element 
sensor was connected to the main drive motor to measure the 
machine power. During the grinding operation, the on-line 
measured power is fed into the computer through an ADC, 
and the net grinding power Pc is obtained by subtracting the 
idling power from the measured power. 

The control system is of the sampled-date type with sam
pling period of 0.5 s. At constant time periods the measured 
power Pc is sampled; the burning power Pb is calculated in 
real time using the previous v and nw values. The new control 
parameters v and nw are then assigned and transmitted 
(through DACs) as references to the control loops. Between 
sampling events, the values of the control parameters are kept 
constant by storing their values in computer registers assigned 
to the DACs. 

The heart of the control system is an algorithm incor
porating the optimal locus equation described in the previous 
section. The grinding operation might start at an arbitrary 
point in the ww^-plane, but is immediately transferred by the 
computer to a point on the optimal locus by changing nw. 
Thereafter, the trajectory of convergence toward the optimal 
operating point is along the optimal locus. For controlling the 
convergence, instead of providing an external reference as is 
typically done in control loops, the reference to the control 
loop, Pb, is calculated in the block Gb to which the control 
variables v and nw are fed. As a consequence, the convergence 
rate depends on the error e = Pb—Pc, which gradually con
verges to zero when proceeding along the locus. 
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Fig. 7 Optimal loci in grinding, calibrated by the wheel's wear flat area 
(A); the grinding-wheel equivalent-diameter (De) is a parameter (constant 
peripheral wheel velocity Vs = 30 m/s) 

Fig. 8 Intelligent controller for a grinding machine: 1-stepping motor 
infeed drive; 2-infeed control handwheel; 3-grinding wheel motor; 
4-power sensor; 5-workpiece spindle DC motor; 6-tacho-generator; 
7-voltage-to-frequency converter 

From preliminary grinding experiments, the grinding power 
Pc was found to be much more sensitive to the infeed velocity 
v than to the spindle speed nw. Therefore, only v is directly 
determined by the controller in Fig. 8 and the corresponding 
nw is calculated on the optimal locus. Such a single-input-
single-output controller is much simpler to design than a 
multioutput controller. The controller algorithm was selected 
according to the equation: 

«(/) = u ( i - !) + *,£?(/) +K2[e(i) -e(i- 1)] (36) 

where the index i is the number of the sampling event. The 
first two terms on the right-hand side of equation (36) con
stitute an integral controller of gain Kx which ensures a zero 
error (e = 0) at the optimal point. The last term is essentially a 
derivative controller of gain K2 which was added to decrease 
the tendency for overshooting while converging toward the 
optimal point. The controller gains of the pilot system were 
selected as K{ = 3.3 /xm/(s-kW) and K2 = 5.3 ^m/(s-kW). 

For repetitive grinding of identical parts (referred to as 
cycles), the system makes use of a learning starting point. 
After the first part is ground, the system selects the optimal 
grinding conditions obtained with that part as a starting point 
for the next part. The stepping motor runs at a constant high 
acceleration to this starting point, and then the control is 
switched to the IMC mode. 

Some results illustrating operation of the grinding system 
for repetitive grinding cycles, with only the grinding power 
constraint, are presented in Fig. 9. For cycle 1, it can be seen 
when starting from an initial infeed velocity v = 1 jtm/s that it 
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CYCLE NO! 1 2 

Fig. 9 Convergence to a varying optimal point in grinding by using 
learning starting point on the optimal locus (conditions: 32A46K8VBE 
wheel, SAE4340 steel workpiece, 0.3 mm removed from workpiece 
radius per cycle) 

takes 28 s for the process to converge near to the optimal 
point. In the subsequent cycles, the system accelerated to the 
learning starting point, and the convergence time was reduced 
to about 4 s. 

7 Conclusions 

The paper introduces a novel on-line optimization ap
proach, based on the determination of an optimal locus for 
processes subject to time-varying constraints. The constraints 
depend on unmeasurable state variables. The optimal locus 
equation, however, is independent of these unmeasurable state 
variables, and they only affect the location of the actual op
timal point on the locus. The effect of the unknown state 
variables is inserted through real-time measurements that are 
contained in the constraint. The optimal operating point lies at 
the intersection between the optimal locus and the most 
limiting constraint, and can be determined in real time. The 
methodology also uses the optimal locus as the convergence 
trajectory to the optimal point, and thereby guarantees 
elimination of constraint violations during the transient 
periods. 

The optimal locus approach has established a science base 
to the development of intelligent machining controllers that 
automatically calculate the machining variables and adapt 
them to the process and its constraints. The IMC was applied 
to a grinding machine, and the experimental results verify the 
theoretical analysis. The system always converged to the op
timal point. It is expected that the optimal locus approach and 
the associated IMC will be applied in future generations of 
machine tool controllers. 

Acknowledgments 

The author would like to express his gratitude to Professor 
S. Malkin for his inspiring ideas and suggestions. 

The design of the grinding system was the M.Se. project of 
Dr. G. Amitay; the author would like to express his thanks to 
Dr. Amitay for his excellent work. 

References 

1 Athans, M., and Falb, P. L., Optimal Control: An Introduction to the 
Theory and Its Applications, McGraw-Hill, New York, 1966. 

2 Feldbaum, A. A., Optimal Control Systems, Academic Press, New York, 
1965. 

3 Bryson, S., and Ho, Y. C , Applied Optimal Control, Blaisdell, Boston, 
MA, 1969. 

4 Koren, Y., and Graupe, D., "Sub-Optimal Solutions of Linear Control 
and Eigenvalue Pattern Problems," Int. J. Contr., Vol. 14, No. 3, Sept. 1971, 
pp. 513-528. 

5 Graupe, D., Identification of Systems, Van Nostrand Reinhold, New 
York, 1972. 

6 Sage, A. P., and Melsa, J. L., System Identification, Academic Press, 
New York, 1971. 

7 Mendel, J. M., Discrete Techniques of Parameter Estimation, Marcel 
Dekker, New York, 1973. 

8 Koren, Y., and Lenz, E., "Optimization and Identification of a Cutting 
Process," ASME-71-WE/Prod-2, Nov. 1971. 

9 Koren, Y., "Dynamic and Static Optimization of the Cutting Process," 
The IstNAMR Conf, Hamilton, Canada, Proc. Vol. 3, May 1973, pp. 67-94. 

10 Lainiotix, D., Deshpande, J. G-., and Upadbyay, T. N., "Optimal Adap
tive Control: A Non-linear Separation Theory," Int. J. Contr., Vol. 15, 1972, 
pp.877-888. 

11 Astrom, K. J., and Wittenmark, B., "Control of Constant but Unknown 
Systems," Proc. of the 5th World Congress of IF AC, Paris, France, June 
12-17, 1972. 

12 Masory, O., and Koren, Y., "Adaptive Control System for Turning," 
CIRP Annals, Vol. 29, No. 1, 1980, pp. 281-284. 

13 Ulsoy, G., Koren, Y., and Rasmussen, F., "Principal Developments in 
Adaptive Control of Machine Tools," ASME JOURNAL OF DYNAMIC SYSTEMS, 
MEASUREMENT, AND CONTROL, Vol. 105, No. 2, June 1983, pp. 107-112. 

14 Koren, Y., and Masory, O., "Variable-gain Adaptive Control System for 
Machine Tools," / . of SME on Manufacturing Systems, Vol. 2, No. 2, Nov. 
1983, pp. 165-174. 

15 Koren, Y., and Masory, O., "Adaptive Control with Process Estima
tion," CIRP Annals, Vol. 30, No. 1, 1981, pp. 373-376. 

16 Ludenbach, K., and Ulsoy, G. A., "Dynamic Modeling for Control of the 
Milling Process," Sensors and Control for Manufacturing, ASME, New York, 
Nov. 1985. 

17 Lambert, J. D., and Levine, M. D., "A Two Stage Learning Control 
System," IEEE Trans. Automat. Contr., Vol. AC-15, No. 3, 1970, pp. 
351-354. 

18 Fu, K. S., "Learning Control Systems - Review and Outlook," IEEE 
Trans. Automat. Contr., Vol. AC-15, No. 2, 1970, pp. 210-221. 

19 Mendel, J. M., and Fu, K. S., Adaptive, Learning, and Pattern Recogni
tion Systems Theory and Applications, Academic Press, New York, 1970. 

20 Tsypkin, Y., Adaptation and Learning in Automatic Control (translated 
from Russian by Z. J. Nikolic), Academic Press, New York, 1971. 

21 Saridis, G. N., "Toward the Realization of Intelligent Control," Proc. of 
IEEE, Vol. 67, No. 8, 1979, pp. 1115-1133. 

22 Koren, Y., Computer Control of Manufacturing Systems, McGraw-Hill, 
New York, 1983. 

23 Malkin, S., "Burning Limit for Surface and Cylindrical Grinding of 
Steels," Annals of the CIRP, Vol. 27, 1978, pp. 233-236. 

24 Koren, Y., "Flank Wear Model of Cutting Tools Using Control Theory," 

266/Vol. 111, JUNE 1989 Transactions of the ASME 

Downloaded 08 Aug 2010 to 141.211.175.139. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ASME Journal of Engineering for Industry, Vol. 100, No. 1, Feb. 1978, pp. 
103-109. 

25 Noto La Diega, S., and Passannanti, A., "Optimal Tool Replacement 
Policies with Running-in of the Cutting Edge," Annals of the CIRP, Vol. 33, 
No. 1, 1984, pp. 1-3. 

26 Alberti, N., Noto La Diega, S., and Passannanti, A., "Interdependence 
Between Tool Fracture and Wear," Annals of the CIRP, Vol. 34, No. 1, 1985, 
pp. 61-63. 

27 Ramalingan, S., "Tool Life Distributions - Part 2: Multiple Injury Tool 
Life Model," ASME Journal of Engineering for Industry, Vol. 99, 1977, pp. 
523-526. 

28 Rosseto, S., and Levi, R., "Fracture and Wear as Factors Affecting 
Stochastic Tool-Life Models and Machining Economics," ASME Journal of 
Engineering for Industry, Vol. 99, 1977, pp. 281-286. 

29 Levi, R., Koren, Y., Malkin, S., and Masory, O., "Probabilistic Model 
for Cutting Tool Fracture Control," The 9th NAMR Conf, Penn State, PA, 
Proc , May 1981, 30, pp. 263-266. 

30 Schmidt, A. O., "Heat in Metal Cutting," Machining Theory and Prac
tice, ASM, Cleveland, OH, 1950. 

31 Taylor, J., "Carbide Cutting Tool Variance and Breakage: Unknown Fac
tors in Machining Economics," 77ie 8th Int. MTDR, Proc, 1967, pp. 487-506. 

32 Malkin, S., "Thermal Aspects in Grinding. Part 2. Surface Temperature 
and Workpiece Burn," ASME Journal of Engineering for Industry, Vol. 96, 
1974, pp. U84-1191. 

33 Malkin, S., and Koren, Y., "Off-Line Grinding Optimization with a 
Microcomputer," Annals of the CIRP, Vol. 29, 1980, pp. 213-219. 

34 Wu, S. M. and Ermer, D. S., "Maximum Profits as the Criterion in the 
Determination of the Optimum Cutting Conditions," ASME Journal of 
Engineering for Industry, Vol. 88, No. 4, Nov. 1966. 

35 Amitay, G., Malkin, S., and Koren, Y., "Adaptive Control Optimization 
of Grinding," ASME Journal of Engineering for Industry, Vol. 103, No. 1, 
Feb. 1981, pp. 102-111. 

Call For Papers 
A M E R I C A N CONTROL C O N F E R E N C E 

San Diego, California, May 1990 

The Dynamic Systems and Control Division of ASME is soliciting the submission of manuscripts for the 1990 American 
Control Conference (ACC). Two types of manuscripts, regular papers (describing work in detail) and short papers (present
ing recent results), may be submitted. If requested by the author, regular papers will also be considered for publication in the 
ASME Journal of Dynamic Systems, Measurement, and Control. 
Prospective authors may submit 6 copies of their regular papers directly to the Technical Editor of the ASME Journal of 
Dynamic Systems, Measurement, and Control: 

Professor M. Tomizuka, Technical Editor 
ASME Journal of Dynamic Systems, Measurement, and Control 
Department of Mechanical Engineering 
University of California at Berkeley 
Berkeley, CA 94720 

These contributed papers must be marked "1990 ACC" and reach the above address before the contributed paper deadline 
of September 15, 1989. If requested by the author, they will be reviewed for both publication in the journal as well as presen
tation at the 1990 ACC. 

Prospective authors of short or regular papers may alternatively submit their manuscripts directly to the following invited 
session organizers in the areas indicated and by the dates given below. All papers submitted to the invited session organizers 
will be considered for presentation at the 1990 ACC, and the authors may also request consideration for journal publication. 

Topic Submit to: By the deadline: 

Adaptive and Optimal 
Control 

Computer Networking for 
Real-Time Control 

Energy Systems Control 

R. Horowitz 
Department of Mechanical Engineering 
University of California 
Berkeley, CA 94720 
Tel: (415) 642-4675 
Asok Ray 
Mechanical Engineering Department 
The Pennsylvania State University 
University Park, PA 16802 
Tel: (814) 865-6377 
Patrick B. Usoro 
Power Systems Research Dept. 
G.M. Research Laboratories 
Warren, MI 48090 
Tel: (313) 986-1550 

or 
Eric P. Fahrenthold 
Department of Mechanical Engineering 
The University of Texas at Austin 
Austin, TX 78712-1063 
Tel: (512)471-3064 

September 15, 1989 

September 15, 1989 

September 15, 1989 

(Announcement continued on p. 285) 

Journal of Dynamic Systems, Measurement, and Control JUNE1989, Vol. 111/267 

Downloaded 08 Aug 2010 to 141.211.175.139. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm




