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Abstract

This paper introduces an adaptive fuzzy logic controller (AFLC) for precision contour

machining which adjusts both input and output membership functions simultaneously. The

parameters of the proposed controller are self-tuned in real-time according to a continuous

measurement of the performance of the controller itself and estimated disturbance values. The

adjustment of the membership functions are restricted within a stable range derived from a

stability analysis. The proposed controller as well as a conventional fuzzy logic controller and

a PID controller were simulated and implemented on a 3-axis milling machine in contour

milling. Both the simulations and experiments show that the AFLC can provide superior

performance in terms of contour tracking accuracy compared with the other two controllers

particularly in machine tool systems where friction is a serious problem in the feed drives.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In order to achieve high precision contour machining, many efforts have been

made to develop more accurate computerized numerical control (CNC) systems. In
precision machining, however, the friction in the moving components of machine
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tools can cause significant machining errors. In order to improve contouring accu-

racy in the presence of friction disturbances, we proposed to control the machine

with a rule-based controller [1] using fuzzy logic rather than model-based compen-

sation techniques [2]. The reason for this rule-based controller is that the imple-
mentation of model-based compensation controllers for friction has limitations due

to the complexity and the nonlinearities of the friction characteristics. The fuzzy

logic controller (FLC) can reduce the effect of cutting force disturbances as well. The

FLC, whose control rules are designed with respect to phase plane determined by

error and change of error, can be considered as an extension of a sliding mode

controller and if properly designed, it is suitable for uncertain and complicated

processes which have model uncertainties, nonlinearity and other ill-defined prop-

erties. It is asserted that fuzzy logic control is less sensitive to variation in system
parameters than conventional controls and can cope with disturbances which dete-

riorate system performance. Therefore, in cases where disturbances such as guideway

friction are a serious problem, the application of fuzzy logic control to servo-control

of CNC machine tools shows promise for better contour tracking performance.

Although a fixed parameter FLC can be recommended as an alternative to a

conventional controller especially in the presence of large and variable friction dis-

turbances, it does not have the capability of self-adjusting its parameters. This in-

ability to self-adjust its parameters has two drawbacks: (i) it requires a complex
tuning procedure for each machine when installing the controller, and (ii) it cannot

cope with changing operating conditions in machining.

This paper deals with a fuzzy logic approach to compensate for friction in order to

improve tracking performance in high precision contour machining. In this paper,

we introduce a fuzzy logic control strategy that contains a new adaptation method.

The proposed adaptation method automatically tunes the controller by shifting and

changing the shapes of the fuzzy logic membership functions according to a real-time

performance measure. The adjustment of the membership functions are restricted
within a stable range derived from a stability analysis for the fuzzy logic control

system. This strategy, which only adds a small computation load, can efficiently self-

tune the controller parameters at the time of installation and adapt them to time-

varying processes. In addition, in order to reduce the contour errors (namely,

deviations from the desired path) due to stiction in the guideways, a low-velocity

friction compensation strategy is also contained in the proposed method, and is

based on adjusting the output membership functions according to estimated friction

values [1]. To our knowledge, this is the first time that an adaptive fuzzy logic
controller (AFLC) (of any type) has been implemented on a CNC machine in

contour machining applications.

This paper is composed of six sections. A conventional fuzzy logic control is

briefly explained in Section 2. In Section 3, the stability analysis for the fuzzy logic

control system is presented to determine a stable range for the controller parameters,

limiting the location of membership functions during adaptation. In Section 4, the

principles of the proposed AFLC are described. The proposed method is verified

through simulation analyses and actual contour tracking experiments in Section 5.
Finally, conclusions are given in Section 6.



S. Jee, Y. Koren / Mechatronics 14 (2004) 299–326 301
2. Fuzzy logic control

This section briefly describes the elements of a conventional FLC (that is included
in the proposed AFLC) and explains its structure.
2.1. Membership functions

A fuzzy set is characterized by a membership function whose value represents a

degree of membership to the fuzzy set having a value between 0 and 1. The mem-

bership function can be defined with parameters. In general, an error (which is a
difference between a desired process state and an actual process output) and the

change in the error are used as inputs to an FLC. The membership functions used in

this study for the error can be parametrized by their left edges (Al
i), centers (A

c
i ), and

right edges (Ar
i ) describing the fuzzy sets Ai (see Fig. 1(a)). The shape shown in Fig.

1(a) can be expressed mathematically by
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Similarly, the membership functions of fuzzy sets Bj for the change in the errors De
can be defined in the same manner with parameters Bl

j, B
c
j and Br

j.

The support of a fuzzy set is the set which contains all the elements in the universe

of discourse (i.e., the space where a fuzzy set is defined) that have a nonzero grade of

membership (see Fig. 1(a)). In the particular case where the support of a fuzzy set is a

single point (where the grade of membership is 1), the fuzzy set is called a fuzzy
singleton (see Fig. 1(b)). The output fuzzy sets Cij can also be defined identically to

the input fuzzy sets. To remove the computational burden for real-time control,

however, we used a simplified center of area defuzzification method, by which only

the centroids are considered for the corresponding output membership functions. In

other words, for simplicity, we used fuzzy singletons for the fuzzy outputs, and they

can be represented by
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Fig. 1. Parameters describing a membership function: (a) typical; (b) singleton.
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lCij
ðuÞ ¼ 1 if u ¼ Cc

ij

0 if u 6¼ Cc
ij

�
ð2Þ
where the control command u defined in a discrete universe in our case, has a
quantized value and Cc

ij are the centroids of the output membership functions.

2.2. Control rules

The operation of an FLC is based on fuzzy control rules that are contained in a

control-rule base. These rules utilize the linguistic values of Ai (fuzzy sets for the

position error), Bj (fuzzy sets for the change in the error) and Cij (fuzzy sets for the

control action), and have the following form:
If e 2 Ai and De 2 Bj then u ¼ Cij ð3Þ
A larger magnitude of jAl
i � Ar

i j increases the probability that the corresponding

control rule will be activated. Therefore, by changing the values Al
i and Ar

i , one can

change the effectiveness of a control rule. In our controller, for each Ai, Bj and Cij, we

assign one of the following seven linguistic labels: negative large (NL), negative

medium (NM), negative small (NS), nearly zero (ZR), positive small (PS), positive
medium (PM), and positive large (PL). An example is shown in Fig. 2 for the po-

sition error e. The variable De has similar fuzzy values. Since in our controller there

are two control inputs (e and De) and seven fuzzy sets are defined for each input,

there are a total of 49 control rules that we have determined and stored in the rule

base. The control rules used in the proposed controller are shown in Table 1 and are

clarified in Appendix A.

2.3. Structure of fuzzy logic control

A block diagram of a conventional FLC is shown in the upper block of Fig. 6 (see
Section 4). An FLC is composed of three main parts: fuzzification, inference engine

with a rule base, and defuzzification. We used as inputs the position error at the

current time step, eðkÞ, and the change in the position errors between the previous

and current steps, DeðkÞ. Through fuzzification, the controller inputs are converted
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Fig. 2. Parameters of the membership functions for the position error.



Table 1

The fuzzy control rule base inside the proposed controller (rule base I)

Control Actions If De 2
NL NM NS ZR PS PM PL

If e 2 NL NL NL NL NL NL NL NL

NM NL NL NM NM NS NS NS

NS NL NM NM NS NS NS ZR

ZR ZR ZR ZR ZR ZR ZR ZR

PS ZR PS PS PS PM PM PL

PM PS PS PS PM PM PL PL

PL PL PL PL PL PL PL PL
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to fuzzy variables (Ai and Bj), where each fuzzy variable has a corresponding lin-

guistic label. After fuzzification, the converted fuzzy input variables are transformed

into a fuzzy output variable (Cij) through the inference engine aided with a control

rule base. The inference engine produces the overall fuzzy output (C) from indi-

vidually activated control rules. The defuzzification unit receives the fuzzy variable C
and generates a crisp (nonfuzzy) control action u0 which is the control output.
3. Stability analysis of the FLC system

From a controller design point of view, we performed an analysis of the proposed

FLC system. This enables us to predict and determine the controller parameters in a
systematic way so that they guarantee stable system behavior. We utilized an ap-

proach for the FLC system based on Jury and Lee�s theorem [3] which is an ex-

tension of Popov�s method of stability analysis [4] to a discrete-time system with

multi-nonlinearities. This method provides sufficient conditions for the absolute

stability of nonlinear control systems. The proposed fuzzy logic control system be-

longs to the category of a general discrete control system shown in Fig. 3. rðkÞ is a
reference input vector and yðkÞ is a system output vector. eðkÞ is an error vector and

corresponds to inputs to a nonlinear controller u which is a set of m nonlinear gain
elements. The proposed FLC output for each nonlinear element can be represented

by
uiðkÞ ¼ ui½eiðkÞ	; i ¼ 1; 2 ð4Þ
where ui½eiðkÞ	 is the output of the ith nonlinear element in u and has a bounded

derivative for each nonlinear element and ei is the ith component of the controller
+

−
ϕ

r(k) u(k )e(k) y(k)
G( z)

Fig. 3. Discrete control system with multi-nonlinearities in the controller.
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input vector eðkÞ. GðzÞ is the representation of the system transfer function matrix

with a zero-order-hold.

In order to perform the stability analysis, we need a mathematical formulation of

the FLC. To make the execution of an analytic formulation facile, we defined the
input membership functions such that an end point of a membership function co-

incides with a centroid of a neighboring membership function. In addition, we let the

centroids of the input membership functions be evenly spaced in their universes of

discourse, and defined the constant distances between the membership functions as

follows:
a ¼ Eiþ1 � Ei

b ¼ DEjþ1 � DEj
ð5Þ
where Ei and DEj are the centroids of the membership functions for e and De, re-
spectively.

As a general case, we assume that eðkÞ and DeðkÞ are located in the following

range:
Ei 6 eðkÞ6Eiþ1

DEj 6DeðkÞ6DEjþ1

ð6Þ
If we use the product operation as a fuzzy implication and the simplified defuzzifi-

cation method, the FLC output in the proposed approach can be represented by
uðkÞ ¼ Ui;j þ ð1=aÞðUiþ1;j � Ui;jÞ½eðkÞ � Ei	 þ ð1=bÞðUi;jþ1 � Ui;jÞ½DeðkÞ � DEj	
ð7Þ
where Ui;j, a centroid of the output membership function, denotes an FLC output

when e ¼ Ei and De ¼ DEj.

For the sake of analysis, the FLC output may be decomposed into two parts as

follows:
uðkÞ ¼ u1ðkÞ þ u2ðkÞ ð8Þ

where u1ðkÞ is the control output component issued only by the position error, and

u2ðkÞ is the remaining part of the control output (i.e., u� u1) due to both the position

error and the change in the position error. Especially when De ¼ 0 (equivalently

DEj ¼ 0 with j ¼ 0), the FLC output is caused only by the position error and is

defined as
u1ðkÞ ¼ Ui;0 þ ð1=aÞðUiþ1;0 � Ui;0Þ½eðkÞ � Ei	 ð9Þ

Accordingly, u2ðkÞ is defined as follows:
u2ðkÞ ¼ ðUi;j � Ui;0Þ þ ð1=aÞ½ðUiþ1;j � Uiþ1;0Þ � ðUi;j � Ui;0Þ	½eðkÞ � Ei	
þ ð1=bÞðUi;jþ1 � Ui;jÞ½DeðkÞ � DEj	 ð10Þ
Therefore, the control output components are related by
u1ðkÞ ¼ u1½eðkÞ	 and u2ðkÞ ¼ u2½eðkÞ;DeðkÞ	 ð11Þ
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where u1 and u2 are nonlinear gain elements. If we define the gains which confine

u1ðkÞ and u2ðkÞ as K1 and K2, respectively, then
0 < u1ðkÞeðkÞ < K1½eðkÞ	2 and 0 < u2ðkÞDeðkÞ < K2½DeðkÞ	2 ð12Þ
which restrict the nonlinear elements u1 and u2 to sectors ½0;K1	 and ½0;K2	, re-
spectively. K1 is the maximum slope of u1ðeÞ with respect to the origin, and u1 is

piecewise linear between the centroids of the membership functions for e. Therefore,
without loss of generality, K1 can be determined by finding the maximum of the

slopes at points where e ¼ Ei (i.e., centroids) (see Fig. 5). From Eq. (9) with e ¼ Ei,

the output from u1 is u1 ¼ Ui;0. Since u2 is piecewise linear between the centroids of
the membership functions for e and De, respectively, the maximum slope of

u2ðe;DeÞ, K2, can be derived from the maximum of the slopes at points where

De ¼ DEj for all possible position errors, equivalently for all Ei. From Eq. (10) with

e ¼ Ei and De ¼ DEj, u2 ¼ Ui;j � Ui;0. In summary, in relation to the FLC parame-

ters, K1 and K2 can be expressed as follows:
K1 ¼ max
i

u1ðEiÞ
Ei

¼ max
i

Ui;0

Ei
for i 6¼ 0 ð13Þ

K2 ¼ max
j

u2ðDEjÞ
DEj

¼ max
i;j

Ui;j � Ui;0

DEj
for j 6¼ 0 ð14Þ
The nonlinear gain u2 depends on e as well as De, and in general it is a different

function according to the value of e. However, with the rule base in Table 1, all these

functions are confined to the region 06u2 6K2De (see Fig. 17(a)).

In order to apply Jury and Lee�s theorem to the proposed FLC system, we define
GðzÞ ¼ G11ðzÞ G12ðzÞ
G21ðzÞ G22ðzÞ

� �
and K ¼ K1 0

0 K2

� �
ð15Þ
with
eðkÞ ¼ eðkÞ
DeðkÞ

� �
and uðkÞ ¼ u1ðkÞ

u2ðkÞ

� �
ð16Þ
In Eq. (15),
G11ðzÞ ¼ G12ðzÞ ¼ GðzÞ
G21ðzÞ ¼ G22ðzÞ ¼ ð1� z�1ÞGðzÞ

ð17Þ
where GðzÞ is the open-loop transfer function in the discrete domain with a zero-

order-hold. If we represent the feed drive system by the following transfer function
GðsÞ ¼ K
sðssþ 1Þ ð18Þ
where K is the open-loop gain multiplied by the encoder gain and s is the time

constant, the discrete transfer function becomes
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GðzÞ ¼ K0

zþ a
ðz� 1Þðz� bÞ ð19Þ
where
K0 ¼ K
T=s � 1þ b

1=s
; a ¼ 1� b� ðT=sÞb

T =s � 1þ b
and b ¼ e�T=s ð20Þ
With Eqs. (15)–(17), (19) and (20), Jury and Lee�s theorem yields the following

absolute stability conditions for the FLC system.

Condition (i):
1

K1

> max
x2½�1;1	

K0½2ax2 þ ð1þ aÞð1� bÞx� a� ð1þ bÞ þ ab	
2ðx� 1Þð1þ b2 � 2bxÞ

� �
ð21Þ
Condition (ii):
K2ðg3x3 þ g2x2 þ g1xþ g0Þ < h2x2 þ h1xþ h0 for all x 2 ½�1; 1	 ð22Þ

where
g3 ¼ 16K0a

g2 ¼ 8K0½ð1� abÞ � 2a	
g1 ¼ 2K0½K0K1a� 4ð1� abÞ � 4ðaþ bÞ	
g0 ¼ K0½K0K1ða2 þ 1Þ þ 8ðaþ bÞ	
h2 ¼ 8ðK0K1aþ 2bÞ
h1 ¼ 4½K0K1ð1þ aÞð1� bÞ � 2ð1þ bÞ2	
h0 ¼ 4f2ð1þ b2Þ þ K0K1½�a� ð1þ bÞ þ ab	g
In our case, K ¼ 28:3, s ¼ 0:055 and T ¼ 0:01, and the resulting stable range for

the sectors is illustrated in Fig. 4. For the control rule base in Table 1, with the evenly
0
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8
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0 2 4 6 8 10

K2

K1

Stable Range

Unstable Range

Fig. 4. Stable range for the FLC sectors.
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spaced centroids of the input membership functions (i.e., Ac
i and Bc

j) in their universes

of discourse, the relationships between the controller inputs and outputs can be

represented as shown in Fig. 5. From Fig. 5, we can see that the sector K2 for the

change in the error is determined by the slopes corresponding to the projections on

the curves: ðU2 � U1Þ=DE1 (¼ ðU1 � U2Þ=DE�1), ðU3 � U2Þ=DE2, ðU3 � U1Þ=DE3 and

�U1=DE�3. With Eq. (5), the magnitudes of the first three slopes above are mutually
related to the sign of 3U2 � 2U1 � U3. That is, if 3U2 � 2U1 � U3 P 0, ðU2 � U1Þ=DE1

is the maximum among the three, and otherwise ðU3 � U2Þ=DE2 is the maximum.

The slope �U1=DE�3, equivalently U1=DE3, is not directly relevant to the others and

needs to be compared with the maximum of the other slopes. Again, with Eq. (5), it

can be induced that U1=DE3 is larger than ðU2 � U1Þ=DE1 and ðU3 � U2Þ=DE2 when
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3U2 � 4U1 < 0 and 3U3 � 3U2 � 2U1 < 0, respectively. In conclusion, K2 reduces to

the following equation:
If 3U2 � 2U1 � U3 P 0; then

if 3U2 � 4U1 P 0; then K2 ¼ ðU2 � U1Þ=DE1

else K2 ¼ U1=DE3

else

if 3U3 � 3U2 � 2U1 P 0; then K2 ¼ ðU3 � U2Þ=DE2

else K2 ¼ U1=DE3

ð23Þ
where Uk (k ¼ 1; 2; 3) are the centroids of the PS, PM and PL membership functions

for the controller output. Based on Eqs. (13) and (23), and the predetermined stable

range (Fig. 4), we established constraints on the range of movement for the output

membership functions and restricted the location of the membership functions

within the stable range.
4. The proposed adaptive fuzzy logic control

The performance of a conventional FLC is dependent on pre-defined fuzzy sets

(i.e., membership functions) and a set of control rules. Thus, if the fuzzy sets or the

control rules are not defined adequately, or if the controlled process behavior

changes, the controller is not effective. To make it effective, the membership func-

tions and the control rules must be modified and re-tuned in real time. Methods
which do this re-tuning automatically are called adaptive fuzzy logic control

(AFLC). Many adaptation methods have been proposed [5–15], and they can be

classified as follows [6]:

(a) methods that directly change the set of control rules [13];

(b) methods that adjust the shapes or individual range of membership function [6,8];

(c) methods that change the elements describing the universe of discourse [5,7–12,

14,15].

The AFLC in [8] is based on a combination of methods (b) and (c). This adaptation

algorithm modifies the parametrized input membership functions. Depending on the

evaluation of activated control rules at the last time step, it modifies the corre-

sponding input membership functions by either shifting them or adjusting the areas

covered by them. Recently, fuzzy model reference learning control (FMRLC) has

been proposed in [9,11] which uses a reference model to automatically modify the

knowledge base by adjusting the output membership functions based on the differ-
ence between the plant and reference model outputs. This approach corresponds to

method (c), which can be performed by either (i) adjusting a scaling factor designated

to each control input/output variable or (ii) shifting an individual membership

function. Especially, dynamically focused learning (DFL) [7] was proposed to en-
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hance the performance of the FMRLC. The DFL adjusts both controller input and

output ranges so that learning can be effectively focused on a current operating re-

gion.
Our adaptation method also combines methods (b) and (c), but it adjusts the

output membership functions (i.e., changes the values Cc
ij) in addition to the input

membership functions (i.e., Al
i, A

r
i , B

l
j, and Br

j). The adjustment of input membership

functions may provide only a limited degree of control rule modification, thereby

resulting in a limited improvement in performance. However, by also adjusting the

output membership functions, which directly affect a control action, we can modify

the control rules more comprehensively and improve the performance significantly.

All these adjustments are made automatically according to (i) a performance index
(PI) that we have introduced and (ii) a comparison between each activated control

action and the overall control action. The PI (denoted by pðkÞ at time step k) is defined
as an indicator for degree of rate of error change due to the previously activated

control rules and it measures the effectiveness of the last control action on the error

reduction. The comparison evaluates the contribution of each activated control rule

in the last action to the overall control action. Our proposed strategy, which includes

real-time calculation of a PI and evaluation of an activated control rule and adjusts

both input and output membership functions, can efficiently adapt the fuzzy con-
troller to changing operating conditions and to time-varying processes. Further, these

advantages are achieved with less computation load and less data storage compared

to the conventional direct rule-modification strategy (e.g., method (a) above).

The proposed adaptation mechanism that adjusts the membership functions is

illustrated in the lower block of Fig. 6 and described in detail below.
Fig. 6. Block diagram of the proposed AFLC.
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4.1. Performance evaluation of control rules

As mentioned before, the proposed controller improves its own performance by

self-evaluating its control rules. In order to evaluate a control rule which was acti-
vated at a former time step, k � 1, two variables are used: the error eðk � 1Þ at step
k � 1, and the error eðkÞ at the current step k. The controller determines how good

each activated rule has changed the error between the former and current time steps.

The evaluated performance pðkÞ (at the current step k) of each control rule activated

at step k � 1, has one of five index values f�2;�1; 0; 1; 2g which indicate the rate of

change of the error due to the activated rule: 2 represents the fastest performance

and )2 represents the slowest or that the error diverges rather than converges. The PI

0 denotes that the error is tending to decrease at a moderate rate or into a desirable
error range (in this case, no correction is necessary in the following step). For in-

stance, let us consider four cases when eðk � 1Þ was PS: (i) if eðkÞ is PL, then pðkÞ is
)2 (too slow: in fact, the error is increasing); (ii) if eðkÞ is PS, then pðkÞ is )1 (the

error has not decreased); (iii) if eðkÞ is NS, then pðkÞ is 0 (adequate: the error is

decreasing at a moderate rate); and (iv) if eðkÞ is NL, then pðkÞ is 1 (a little too fast:

the error has decreased more than desired). For another example, when eðk � 1Þ was
PL and if eðkÞ is NL, then pðkÞ corresponds to 2 (too fast: the error has decreased

excessively and consequently becomes too far from the desired position in the op-
posite direction).

One of the innovative aspects of the proposed method is the principle that we have

developed for determining the PI that we defined. The principle could be extended

to similar systems having a different control rule base and/or fuzzy sets. For con-

venience, we defined Ei (i ¼ �3;�2;�1; 0; 1; 2; 3) as membership functions for the

position errors, where )3 is NL, )2 is NM, )1 is NS, 0 is ZR, 1 is PS, 2 is PM, and 3

is PL. In addition, we defined E�3, E�1, E1 and E3 as odd membership functions, and

E�2, E0 and E2 as even membership functions. We set outer limits for the left and
right edges of the membership functions such that these points do not exceed the

centers of neighboring membership functions. Then, neither the odd nor the even

membership functions ever overlap each other. The principle for determining the PI

are described below.

For a control rule which provides error reduction to an immediately neighboring

smaller membership function, the performance is considered desirable and the index

is defined as 0. First, we defined the PI between either only odd membership func-

tions or only even membership functions. If a corresponding membership for the
position error has changed between two consecutive time steps from E2m to E2n

(m; n ¼ �1; 0; 1) or from E2m�1 to E2n�1 (m; n ¼ �1; 0; 1; 2), a PI pðkÞ can be repre-

sented by
pðkÞ ¼
1
2
½x� y � 2	 for x > 0

1
2
½y � x� 2	 for x < 0

�
ð24Þ
where ðx; yÞ ¼ ð2m; 2nÞ or ð2m� 1; 2n� 1Þ. The PI becomes 0 with error reduction

by two membership function states which is the possible minimum change. Then, for



Table 2

The performance indices

Performance Index If eðkÞ is
E�3 E�2 E�1 E0 E1 E2 E3

If eðk � 1Þ was E�3 )1 0 0 0 1 2 2

E�2 )1 )1 0 0 1 1 2

E�1 )2 )1 )1 0 0 1 1

E0 
 
 
 0 
 
 

E1 1 1 0 0 )1 )1 )2
E2 2 1 1 0 0 )1 )1
E3 2 2 1 0 0 0 )1

S. Jee, Y. Koren / Mechatronics 14 (2004) 299–326 311
the other cases when the membership functions have changed from odd to even or

vice versa, the PI is given by
pðkÞ ¼
1
2
½x� y � 1	 for x > 0

1
2
½y � x� 1	 for x < 0

�
ð25Þ
where ðx; yÞ ¼ ð2m� 1; 2nÞ or ð2m; 2n� 1Þ. In these cases, error reduction by one

membership function state corresponds to the PI of 0 for the same reason (i.e.,

possible minimal change) as above. With this index of 0 as a datum line, the mag-

nitude of performance indices for other undesirable cases is chosen as proportional

to deviation from the above desirable cases. According to Eqs. (24) and (25), the
number of performance indices may need to be increased as that of the membership

functions increases. Nevertheless, the basic principle described by the equations can

still be applied to the expanded set of performance indices. It should be noted,

however, that there is an exception to the above principle, i.e., when the error has

changed from E�3 or E3 to E0 (represented by boxes in Table 2), we defined the PI as

0 instead of 1 (since the error decreased into a desirable range). The performance

indices are summarized in Table 2. Note that when eðk � 1Þ was E0, only no change

in the error (i.e., eðkÞ is only E0) is desirable; for the other cases (denoted by 
), the PI
does not need to be defined nor considered, and the contribution of the corre-

sponding control rule toward the overall control action is made relatively smaller in

the following step by adjusting the membership functions.
4.2. Adjustment of the membership functions

The modification of the fuzzy input membership functions is conducted by si-

multaneously moving the left (Al
i and Bl

j) and right edges (Ar
i , and Br

j) of the mem-
bership functions, thereby making the areas covered by the membership functions

narrower or wider. For the fuzzy output membership functions, the modification is

performed by shifting the centroids (Cc
ij) of the output membership functions. The

principle of this membership function adjustment is described below with two ex-

amples.
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Fig. 7. Error change in Example 1.

312 S. Jee, Y. Koren / Mechatronics 14 (2004) 299–326
Example 1. Let us assume that only one control rule was activated at the former step

k � 1 and it was
If eðk � 1Þ ¼ PS and Deðk � 1Þ ¼ PS then uðk � 1Þ ¼ PM ð26Þ

As a result of the corresponding control action, the error changed from eðk � 1Þ ¼
PS to eðkÞ that belongs to two membership functions ZR and PS (as shown in Fig.

7). Therefore, the rule in Eq. (26) has two performance indices: one PI is 0 because

the error changed from eðk � 1Þ ¼ PS to eðkÞ ¼ ZR (see Table 2), and the other

index is )1, since the error still remains as eðkÞ ¼ PS. However, to make a decision,
the controller needs to assign only a single PI to a rule. Since eðkÞ ¼ ZR has a higher

degree of membership than eðkÞ ¼ PS (i.e., closer to 1), the controller decides that

the PI which represents this rule is 0. Therefore, no modification is necessary in the

parameters during the next iteration.

Example 2. In the second example, the error eðk � 1Þ corresponds to two mem-

bership functions. Let us assume that the following control rules were activated at

time k � 1.
ðaÞ If eðk � 1Þ ¼ PS and Deðk � 1Þ ¼ ZR then uðk � 1Þ ¼ PS

ðbÞ If eðk � 1Þ ¼ PM and Deðk � 1Þ ¼ ZR then uðk � 1Þ ¼ PM
ð27Þ
The values corresponding to eðk � 1Þ are shown in Fig. 8(a). At time k � 1, the

controller calculates the output degree of membership for each rule (see Fig. 8(b)).
These two outputs are combined to give a single overall control action. The overall

control action from these rules results in an increase in the error at time k (eðkÞ) as
shown in Fig. 8(a). Performance indices are assigned to each activated rule in the

same way as in Example 1. For rule (a) in Eq. (27), since eðkÞ is in both PM and PL,

the PI can be either )1 (from PS to PM) or )2 (from PS to PL). However, PL has a

higher degree of membership than PM (see Fig. 8(a)), and therefore the PI for rule

(a) is )2. For rule (b) in Eq. (27), the same index, )1 applies to both eðkÞ ¼ PM and

eðkÞ ¼ PL (see Table 2). In summary, neither of the indices of these control rules ()1
and )2) shows desirable performance, and the parameters of both rules need to be

modified.

From Fig. 8(b), we can see that the control action resultant from rule (a) pulls the

overall control action u0ðk � 1Þ to the left (i.e., smaller u), and therefore substantially
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Fig. 8. Membership functions in Example 2: (a) error change; (b) fuzzy outputs.
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deteriorates the overall control action (note that u0ðk � 1Þ needed to be larger to

reduce the error). Since this control rule (a) suggests an action that makes a negative

contribution to the overall control action, namely making it smaller, the rule is

negatively reinforced by making narrower the input fuzzy sets which participated in

determining this control rule (i.e., narrower membership functions for eðk � 1Þ ¼ PS

and Deðk � 1Þ ¼ ZR). As for rule (b), as can be seen from Fig. 8(b), its control action

is larger than the control action from rule (a), and accordingly larger than the overall

control action. Therefore, the input membership functions which participate in rule
(b) (i.e., eðk � 1Þ ¼ PM and Deðk � 1Þ ¼ ZR) need to be modified so that the re-

sulting control action PM can have a higher degree of membership, therefore making

a bigger contribution to the overall control action, and consequently enabling a

larger u0. For this reason, both input membership functions (PM for eðk � 1Þ and

ZR for Deðk � 1Þ) become wider. For the fuzzy output singleton of each rule, we

modify only such fuzzy output singletons that have a negative effect on the overall

control action compared with other fuzzy output singletons activated together.

Therefore, the fuzzy output singleton from rule (a) (i.e., uðk � 1Þ ¼ PS) is shifted to
the right to have a larger value of u, and the output singleton from rule (b) (i.e.,

uðk � 1Þ ¼ PM) is not moved. To summarize the example, based on (i) the PI and (ii)

the comparison between a single control action from an activated control rule and

the overall control action, we can determine if a certain control rule suggests an

action that makes a positive or negative contribution to the overall control action.

In general, the degree of modification (i.e., the magnitude of the movement of the

left and right edges for the input membership functions, and of the shifting of the

fuzzy output singletons) can be determined from the PI. In other words, if the PI for
a control rule is �1, the left and right edges for corresponding input membership

functions are moved by 1 step, and the corresponding fuzzy output is also shifted by
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1 step. If the PI is �2, the above parameters are adjusted by 2 steps. If the PI is 0, no

modification is needed.

The AFLC main algorithm is summarized in Appendix B. In the algorithm, the

constants KA, KB and KC denote the magnitudes of adjustment steps for the mem-
bership functions of error and the change in the error, and for the fuzzy output

singletons, respectively.

4.3. Low-velocity friction compensation

In the adaptation algorithm, we have also included a part of an estimated friction

model [1]. That is, we excluded the Coulomb friction component (which is constant

with respect to velocity) of the friction model, and considered only the remainder of
the model. In other words, only the nonlinear component of the friction model, due

to the effect of start and negative viscous friction, was used for friction compensa-

tion. To avoid the contour errors due to the nonlinear friction effect, we have defined

a low-velocity range (under 12 mm/s on our machine) where the friction values are

high with large start friction and negative viscous friction. For the low-velocity

range, we defined the effect as a function of velocity V (in mm/s):
For the X -axis:

udðV Þ ¼
0:05V 2 � 1:16V þ 6:54 for 06 V < 12

�0:04V 2 � 1:00V � 6:43 for � 126 V < 0

�

For the Y -axis:

udðV Þ ¼
0:04V 2 � 1:12V þ 7:23 for 06 V < 12

�0:02V 2 � 0:68V � 5:04 for � 126 V < 0

�
ð28Þ
We adjusted the output membership functions using a velocity signal in a feedfor-

ward manner. In other words, ud is added to each fuzzy output singleton Cc
ijðkÞ,

which is already adjusted by the proposed adaptation mechanism, as represented by
Cc
ijðkÞ ¼ Cc

ijðkÞ þ udðV Þ ð29Þ
This results in adding a compensation signal ud to the overall control action u0.
Consequently, the fuzzy output membership functions are tuned according to the

performance measure and the velocity.

As an extension of the above adjustment, we also added the following conditions

into the algorithm to compensate for stiction. These conditions enable the com-

pensation to be activated only while the system has an actual feedback and issues a

control command.
If ðV � 0 and jeðkÞjP 2 BLUsÞ then ud ¼ ud
If ðV � 0 and jeðkÞj < 2 BLUsÞ then ud ¼ 0

ð30Þ
A basic length-unit (BLU) is the resolution unit (0.01 mm in our case); in the region

�1 BLU6 e6 1 BLU the system is in open loop. The system has a feedback and

may generate a motion command only when the absolute value of the error exceeds
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1 BLU. Therefore, only a signal of jejP 2 BLUs shows that the control system issues

a motion command.
5. Evaluation of adaptive fuzzy logic control

The objectives of this section are: (i) to compare the performance of the FLC and
the AFLC, and (ii) to study the effect of adaptation on the AFLC performance. We

performed both simulations and actual contour tracking experiments on a 3-hp CNC

milling machine using the proposed FLC and AFLC algorithms. This machine is

controlled by a general purpose computer (a 33 MHz 80486-based PC), thereby

enabling us to implement various interpolation and control software. The control

computer is interfaced with linear encoders and a digital-to-pulse width modulation

(PWM) converter through a quadrature decoder board and a digital I/O board,

respectively. The linear encoders are attached on each axis for the table position
feedback to the controller, and the digital-to-PWM converter generates a corre-

sponding 5-V PWM signal from an 8-bit digital control command for each axis. The

5-V PWM signal for each axis is amplified through a power amplifier on the machine

and sent to each DC servo-motor. Fig. 9 shows a schematic diagram of the proposed
Fig. 9. Overall structure of the experimental testbed.
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control system for one axis. The controls were implemented for two axes. In Fig. 9, R
is a position reference input. P is a position measurement from an encoder. V is a

velocity feedback calculated from dividing a position increment DP between two

consecutive time steps by the controller sampling time T (10 ms in our system). In
addition to the main AFLC algorithm, we combined an integral ðIÞ control action to

improve the steady-state tracking accuracy. Uc represents the combined control

command to the motor. The AFLC, FLC and a conventional PID controllers were

implemented on the milling machine.

In the proposed AFLC, the axial position error, the change in the error, the ve-

locity feedback and the fuzzy controller output were used as inputs to the adaptation

algorithm of the AFLC (see Fig. 9). The fuzzy input membership function bound-

aries (i.e., left and right edges) for the error were moved inward or outward by steps
of 0.5 BLU (i.e., KA ¼ 0:5) while those for the change in the error were moved by

steps of 0.125 BLU (i.e., KB ¼ 0:125) in proportion to the magnitude of the PI (see

Appendix B). Likewise, for the fuzzy output membership functions, the singletons

were shifted by one unit (i.e., KC ¼ 1) of control command to the power amplifier. In

addition, the singletons were also adjusted based on the estimation of friction effect

[1] in the experiments. It should also be noted that in order to avoid unstable system

behavior, we added constraints on the range of movement of the controller para-

meters based on the stability analysis in Section 3. That is, the parameters were
adjusted only within the stable range derived from the stability analysis.

The initial parameter values for the membership functions in the fuzzy logic

controller were set to be the same for both the conventional FLC (without the ad-

aptation mechanism) and the AFLC, and they were intentionally not well-tuned. We

used the same initial parameter values for input membership functions in both

simulations and experiments.

5.1. Simulation analyses

In order to investigate the effect of our adaptation mechanism, we performed

simulations of the AFLC and the FLC under the same conditions. To make the

simulation more realistic, we estimated friction values on the real machine [1] and

added these values to the simulated machine as a disturbance to the system.

5.1.1. Effect of adaptation

Fig. 10 shows the simulation results when the machine performs a counter-

clockwise circular motion with a radius of 40 mm, and a feedrate of 0.754 m/min. To

investigate the pure effect of the proposed adaptation mechanism, we set the integral

control gain to zero in this simulation. One full circular motion (namely, one cycle)

takes 20 s. During this period, the AFLC adjusts itself to the environment and self-

tunes the controller parameters. If another circle is needed, the performance would
be better. In order to show the effect of adaptation, we simulated a motion of three

successive circles. In Fig. 10(a), the axial position errors during the first three cycles

(i.e., from 0 to 60 s) in the X -direction are presented; a similar result was obtained for

the Y -direction. At time 0, both the AFLC and the FLC have the same values for the



-50

0

50

0 10 20 30 40 50 60

A
xi

al
 P

os
iti

on
 E

rr
or

s 
[B

L
U

]

Time [sec]

FLC

AFLC

(a) 

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60

C
on

to
ur

 E
rr

or
s 

[B
L

U
]

Time [sec]

FLC

AFLC

(b)

Fig. 10. Simulation comparison of (a) axial position errors and (b) contour errors for a circular contour
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controller parameters. With the AFLC, the error was reduced as the motion cycle

advanced, and the root mean square (RMS) error was reduced from 9.6 BLUs

during the first cycle to 5.6 BLUs at the third cycle (i.e., from 40 to 60 s). Note that

for the regular FLC the RMS error remained almost the same (approximately 16.2
BLUs). This shows the effect of adaptation in the AFLC algorithm.

A comparison of the contour errors shows that the adaptation mechanism effec-

tively reduced the contour error after 15 s (corresponding to a three-quarter circle

during the first cycle). In Fig. 10(b) we have compared the contour errors for the

three cycles, and a big difference may be seen in the performance of the two con-

trollers. In conclusion, with the adaptation mechanism, the RMS contour error is

reduced after the first cycle and stays at a level lower by a factor of 4 compared to the

contour error obtained with the conventional FLC. When we continued to operate
with the tuned parameters, the contour error remained at the same magnitude as in

the third cycle.

In Fig. 11, we have represented the simulation results for a straight line motion

where the feedrate was 0.6 m/min and the trajectory had an angle of 26.6� with the
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Fig. 11. Simulation comparison of (a) axial position errors and (b) contour errors for a linear contour

(feedrate¼ 0.6 m/min).
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X-axis. In this simulation, the integral control gain was set to 8.0 after the AFLC was

designed. This gain was adequately chosen to eliminate the steady-state position

error and to reduce the maximum contour error caused by friction disturbances, but

in such a way that it does not deteriorate system stability. With the FLC the axial
position error did not converge, but with the AFLC the error converged to zero

steady-state error. The difference between the FLC and the AFLC is even more

impressive when observing the contour error. With the FLC the contour error

continues to oscillate at an amplitude of �5 BLUs, whereas the contour error was

reduced to almost zero with the AFLC. Note that an error amplitude of �1.5 BLUs

is the best that a controller can achieve.

5.1.2. Friction disturbance rejection

In order to have a baseline for the investigation of the effect of friction distur-

bances on the AFLC, we simulated the AFLC for a different circular contour (with a

radius of 20 mm and a lower feedrate of 0.377 m/min to increase the effect of friction

disturbances), with and without the disturbances in the simulator program. We

compared the contour errors of both cases in Fig. 12(a) after the controller para-

meters were tuned respectively for each case. With the disturbances, the RMS

contour error increased slightly from 1.1 to 1.5 BLUs with the disturbances. This
difference, however, is much smaller, compared with the contour error increase when

using a conventional PID controller in the presence of friction disturbances: we also

performed the simulation with the PID controller under the same conditions as

above and depicted the results in Fig. 12(b). The controller gains were derived based

on the pole placement method, and they were tuned to provide a fast response while

guaranteeing small overshoot. The proportional, integral and derivative gains were

1.5, 8.1 and 0.1, respectively. Without the disturbances, the PID controller also

shows good contouring accuracy with an RMS contour error of 1.5 BLUs. The RMS
contour error with the disturbances, however, increased to 3.4 BLUs, and the

maximum contour error due to stiction repeated at every 90� was considerable and

up to 15.6 BLUs. The conclusion is that the proposed AFLC has an excellent dis-

turbance rejection performance.
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5.2. Experimental tests

In the experimental system, in addition to the adaptation strategy as in the sim-
ulation analyses, we have also included a low-velocity friction compensation strategy

as mentioned in Section 4. Therefore, for the fuzzy output singletons, in addition to

adjusting them based on performance, we have also adjusted them according to the

estimation of the friction effect.

In order to investigate the effect of our adaptation method, we implemented the

AFLC and the FLC and compared their contour errors. Some typical results are

shown in Figs. 13 and 14, where the machine moves along a linear contour y ¼ 10x
with a feedrate of 0.8 m/min (Fig. 13) and a circular contour with a radius of 40 mm
and a feedrate of 0.754 m/min (Fig. 14). In Fig. 14(a) and (b), we compared the
-10

-5

0

5

10

0 0.5 1 1.5 2

C
on

to
ur

 E
rr

or
s 

[B
L

U
]

Time [sec]

FLC

AFLC

Fig. 13. Experimental comparison of linear contour errors (feedrate¼ 0.8 m/min).
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(b) third cycle.



Table 3

Initial parameter values for the membership functions

Membership functions for e Left edge Center Right edge

NL �1 –21 –16

NM )19 )14 )9
NS )12 )7 )2
ZR )5 0 5

PS 2 7 12

PM 9 14 19

PL 16 21 1

Membership functions for De

NL �1 )4.5 )3.5
NM )4.0 )3.0 )2.0
NS )2.5 )1.5 )0.5
ZR )1.0 0.0 1.0

PS 0.5 1.5 2.5

PM 2.0 3.0 4.0

PL 3.5 4.5 1

Membership functions for u Centroid

NL )32
NM )16
NS )8
ZR 0

PS 8

PM 16

PL 32
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contour errors for the first and third cycles, respectively. The parameter values for

the membership functions in the FLC, which were the initial parameter values for the

AFLC, are listed in Table 3.

As can be seen from the figures, the adaptation mechanism substantially reduces

the oscillations in the contour errors that occur with the regular FLC. The RMS

value of contour errors of the above experiments is reduced by a factor of 2 as seen

in Table 4. For the straight line motion, if we compare the RMS contour errors

after 1 s, the error is reduced from 1.5 BLUs (with the FLC) to 0.4 BLU (with the
AFLC). For the circular motion, the maximum contour error at every 90� is re-

duced from 14.3 to 6.4 BLUs. With the proposed AFLC, there exists some degree

of oscillation in the contour errors. Although any chattering effect was not per-

ceived during the experiments, the oscillation needs to be reduced for better surface
Table 4

Comparison of the RMS contour errors (unit: 10 lm)

Contour AFLC FLC

Straight line 0.9 1.7

Circle 1.9 4.0
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finish. The oscillation can be reduced by increasing the number of input and output

membership functions resulting in increased number of control rules which renders

finer control actions. Alternatively, the reduction of the oscillation can be achieved
efficiently by dynamically changing the range of input and output membership

functions through adjusting scaling factors designated to the control inputs and

output. This strategy of ‘‘dynamic hedging’’ can adjust the input and output range

such that all predefined control rules are activated at any operating range, resulting

in finer control actions.

In order to examine the performance of the proposed adaptation method under

cutting force disturbances, we also conducted actual machining tests with the AFLC.

Fig. 15 shows a typical experimental result under end milling (slotting) with an
aluminum workpiece. The radius of the desired circular contour was 20 mm and the

feedrate was 0.3 m/min. Depth and width of cut were 2 and 10 mm, respectively, and

spindle speed was 1600 rpm. Even under the actual cutting conditions, as the cycle

advanced, the controller parameters were automatically tuned by the proposed ad-

aptation mechanism, resulting in reduction of the contour errors. In Fig. 15, we

depicted the contour errors for the first cycle (Fig. 15(a)) and the third cycle (Fig.

15(b)). As seen from the figures, the maximum contour error was reduced approx-

imately by a factor of 2 with the aid of the adaptation method.
In Fig. 16, we compared the contour errors of the AFLC (with tuned parameters

through the proposed adaptation mechanism) with those of a well-tuned conven-

tional PID controller for producing circular and linear contours, respectively. The

PID controller gains were identical to those in the simulation. For circular motions,

all our experiments show that the contour tracking performance of the AFLC is far

better than that of the PID controller. For example, for the circular motion in Fig.

16, with the AFLC the RMS contour error was reduced by a factor of 2.6 compared

to the PID controller, and the maximum error was reduced by a factor of 2.9. For
straight line motions, the steady-state contour errors are not significantly different,

but the initial contour errors of the PID controller due to friction are reduced

considerably by the AFLC (by a factor of 3 in Fig. 16(b)). Therefore, if a contour has

many short segments, the improvement achieved by the AFLC will be significant.
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6. Conclusions

To achieve good contouring accuracy in the presence of disturbances, such as

cutting forces or friction in the feed drives of machine tools, we have developed an

AFLC. The parameters for both input and output membership functions of this
AFLC are tuned in real time, within a stable range, based on the performance of

each control rule. In our method, this performance is checked in real time. The

computation time for each axis is approximately 0.4 ms at every sampling interval

(with a 33 MHz 80486-based PC), whereas 0.3 ms is required for the conventional

FLC. Therefore, it appears that the additional computation load is small and the

AFLC can be applied to multi-axis machines.

Through simulations and experiments we have demonstrated that the proposed

AFLC can effectively adjust the controller parameters, and substantially improve
the contouring accuracy compared with a conventional FLC. We have also shown

that the proposed controller is robust for friction disturbances and considerably

reduces the contour errors due to the disturbances. This indicates that the proposed

AFLC can be a good alternative of conventional controllers, such as a PID con-

troller, in machine tool systems especially where friction is a serious problem in the

feed drives.
Appendix A. Clarification of the proposed control rules

To clarify the proposed control rules, we compared the performance of the rule

base with that of two other rule bases shown in Tables 5 and 6, respectively. Table 5

shows a linear control rule base except the saturation in the controller output states.
Table 6 is the classical rule base suggested by MacVicar-Whelan [16]. The differences

in the three rule bases, if the controller outputs are divided into two parts (see

Section 3 for details), can be considered that they have different nonlinear derivative

gains while having the same nonlinear proportional gains. The different derivative



Table 5

Rule base II

Control Actions If De 2
NL NM NS ZR PS PM PL

If e 2 NL NL NL NL NL NM NS ZR

NM NL NL NL NM NS ZR PS

NS NL NL NM NS ZR PS PM

ZR NL NM NS ZR PS PM PL

PS NM NS ZR PS PM PL PL

PM NS ZR PS PM PL PL PL

PL ZR PS PM PL PL PL PL

Table 6

Rule base III

Control Actions If De 2
NL NM NS ZR PS PM PL

If e 2 NL NL NL NL NL NM NS ZR

NM NL NL NM NM NS ZR PS

NS NL NM NS NS ZR PS PM

ZR NM NM NS ZR PS PM PM

PS NM NS ZR PS PS PM PL

PM NS ZR PS PM PM PL PL

PL ZR PS PM PL PL PL PL
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gains are depicted in Fig. 17, where Ei (i ¼ 0; 1; 2; 3) represent the centroids of the

ZR, PS, PM and PL membership functions for the error, respectively. Since the rule

bases are skew-symmetric (i.e., Cji ¼ �Cij), the derivative gains are shown only for

the positive range of errors. From the figure, it can be seen that overall the rule base

in Table 1 has relatively lower derivative gains than the other rule bases and that the

rule base in Table 6 has intermediate gains. Step responses for the rule bases are
compared in Fig. 18, which shows that the rule base I outperforms the other rule

bases. In addition, it appears that the rule base III gives slightly worse performance

than the rule base II because the derivative gains of the rule base III are excessively

low (i.e., zero) specially in the range where the error is PS or PM and the error

change is PS.
Appendix B. AFLC algorithm

If a control rule activated at the former time step k � 1 was

‘‘If eðk � 1Þ ¼ Aiðk � 1Þ and Deðk � 1Þ ¼ Bjðk � 1Þ then uðk � 1Þ ¼ Cijðk � 1Þ’’
and if the resulting PI for this rule is pðkÞ, then:



Fig. 17. Derivative gains for the rule bases: (a) Table 1; (b) Table 5; (c) Table 6.
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(I) if eðk � 1Þ > 0 and pðkÞ > 0, then

if Cijðk � 1ÞP u0ðk � 1Þ (overall control action from all of the activated rules),

then 1

Al
iðkÞ ¼ Al

iðk � 1Þ þ KApðkÞ; Ar
i ðkÞ ¼ Ar

i ðk � 1Þ � KApðkÞ
Bl
jðkÞ ¼ Bl

jðk � 1Þ þ KBpðkÞ; Br
jðkÞ ¼ Br

jðk � 1Þ � KBpðkÞ
Cc

ijðkÞ ¼ Cc
ijðk � 1Þ � KCpðkÞ

else

Al
iðkÞ ¼ Al

iðk � 1Þ � KApðkÞ; Ar
i ðkÞ ¼ Ar

i ðk � 1Þ þ KApðkÞ
Bl
jðkÞ ¼ Bl

jðk � 1Þ � KBpðkÞ; Br
jðkÞ ¼ Br

jðk � 1Þ þ KBpðkÞ
Cc

ijðkÞ ¼ Cc
ijðk � 1Þ

(II) if eðk � 1Þ > 0 and pðkÞ < 0, then

if Cijðk � 1Þ > u0ðk � 1Þ, then
Al
iðkÞ ¼ Al

iðk � 1Þ þ KApðkÞ; Ar
i ðkÞ ¼ Ar

i ðk � 1Þ � KApðkÞ
1 Indicates that the control action from this rule played a role in making the overall control action

larger and consequently changed a positive error at the former time step excessively to a negative error.

Therefore, the corresponding (positive) output singleton is shifted to the left to make it smaller and the

corresponding input membership functions are contracted.
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Fig. 18. Comparison of step responses for different rule bases.
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Bl
jðkÞ ¼ Bl

jðk � 1Þ þ KBpðkÞ; Br
jðkÞ ¼ Br

jðk � 1Þ � KBpðkÞ
Cc

ijðkÞ ¼ Cc
ijðk � 1Þ

else

Al
iðkÞ ¼ Al

iðk � 1Þ � KApðkÞ; Ar
i ðkÞ ¼ Ar

i ðk � 1Þ þ KApðkÞ
Bl
jðkÞ ¼ Bl

jðk � 1Þ � KBpðkÞ; Br
jðkÞ ¼ Br

jðk � 1Þ þ KBpðkÞ
Cc

ijðkÞ ¼ Cc
ijðk � 1Þ � KCpðkÞ

(III) if eðk � 1Þ < 0 and pðkÞ > 0, then

if Cijðk � 1Þ > u0ðk � 1Þ, then
Al
iðkÞ ¼ Al

iðk � 1Þ � KApðkÞ; Ar
i ðkÞ ¼ Ar

i ðk � 1Þ þ KApðkÞ
Bl
jðkÞ ¼ Bl

jðk � 1Þ � KBpðkÞ; Br
jðkÞ ¼ Br

jðk � 1Þ þ KBpðkÞ
Cc

ijðkÞ ¼ Cc
ijðk � 1Þ

else

Al
iðkÞ ¼ Al

iðk � 1Þ þ KApðkÞ; Ar
i ðkÞ ¼ Ar

i ðk � 1Þ � KApðkÞ
Bl
jðkÞ ¼ Bl

jðk � 1Þ þ KBpðkÞ; Br
jðkÞ ¼ Br

jðk � 1Þ � KBpðkÞ
Cc

ijðkÞ ¼ Cc
ijðk � 1Þ þ KCpðkÞ

(IV) if eðk � 1Þ < 0 and pðkÞ < 0, then

if Cijðk � 1ÞP u0ðk � 1Þ, then
Al
iðkÞ ¼ Al

iðk � 1Þ � KApðkÞ; Ar
i ðkÞ ¼ Ar

i ðk � 1Þ þ KApðkÞ
Bl
jðkÞ ¼ Bl

jðk � 1Þ � KBpðkÞ; Br
jðkÞ ¼ Br

jðk � 1Þ þ KBpðkÞ
Cc

ijðkÞ ¼ Cc
ijðk � 1Þ þ KCpðkÞ

else

Al
iðkÞ ¼ Al

iðk � 1Þ þ KApðkÞ; Ar
i ðkÞ ¼ Ar

i ðk � 1Þ � KApðkÞ
Bl
jðkÞ ¼ Bl

jðk � 1Þ þ KBpðkÞ; Br
jðkÞ ¼ Br

jðk � 1Þ � KBpðkÞ
Cc

ijðkÞ ¼ Cc
ijðk � 1Þ
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