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Abstract 
Manufacturing systems are subject to both internal and external disruptions. As a result, production 
sequences which appear optimal during planning might be sub-optimal or even infeasible when implemented. 
We therefore consider how manufacturers can trade off anticipated completion time (makespan) against 
customer responsiveness when making sequencing decisions. We first define a policy as a way to control 
product sequencing in real time. We then present a framework for evaluating different policies to assess their 
impact on customer responsiveness. Finally, we demonstrate how this framework can be used to analyze the 
link between sequencing, lot size, and update frequency.  
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1 INTRODUCTION 
In this paper, we consider how disruptions (machine 
breakdowns, customer order changes, etc.) impact the 
quality of sequencing decisions in a sequential 
manufacturing line (e.g., flow shops) producing multiple 
products. In such a system, all product types move through 
the same sequence of operational stages, but may spend 
different amounts of time in each. If the products are not 
perfectly balanced in terms of these processing times, 
either across operational stages for a given product or 
between different products, then the order in which they 
are produced can have a considerable impact on primary 
performance metrics such as order completion time 
(makespan). Thus, making relatively simple, low cost 
operational changes (i.e. resequencing the products) can 
significantly alter system performance without any 
additional capital costs.  In particular, sequencing 
decisions can impact customer responsiveness – loosely 
defined as how well we provide customers what they want 
when they want it – which is of particular importance in 
today’s competitive and volatile marketplace. 
In practice, material/manufacturing requirements planning 
tools (MRP/MRPII) are often used for production planning, 
including product sequencing. Such tools provide many 
important benefits, but are designed for deterministic 
environments with long lead times. When disruptions 
occur, changes must be manually entered into the system 
and then the user must develop a new product sequence. 
Therefore, these traditional tools do not fit production 
environments in which customers are allowed to make due 
date and quantity changes in their original orders; a new 
framework that considers such conditions is needed.  
Although MRPII systems do not place primary emphasis 
on sequencing decisions, the academic community has 
devoted significant research to developing optimization 
tools for sequencing products so as to minimize makespan 
[e.g. 1, 2, 3]. However, this research again fails to address 
the issue of system disruptions. It is often the case that 
sequences which are optimal relative to the initial system 
inputs may not be optimal – or even feasible -- when 
implemented under actual conditions in which system 
disruptions such as machine failures and customer 
changes during order processing can occur (see, for 
example, [4, 5]). 

In recent years, additional research has focused on 
addressing system variability in product sequencing [e.g. 
6, 7]. Inherent in research efforts such as these, however, 
is the need to establish metrics for evaluating solution 
quality. Metrics typically considered include average 
makespan, holding and shortage costs, and excess 
inventory. But in today’s competitive global economy, it is 
no longer sufficient to focus solely on these manufacturer-
focused metrics -- customer responsiveness must be 
considered as well [8].  
In environments where capacity is tightly constrained 
relative to customer demand, and where customer orders 
are typically filled through new production rather than from 
inventory, disruptions can often prevent manufacturers 
from fully satisfying customer demand at the original due 
date. In such cases, it is not immediately clear what the 
relationship is between a given production sequence and 
how customer responsive it is. Given that a customer’s 
demand cannot be fully satisfied at the original due date, 
particularly if the order quantity has changed, what feasible 
alternatives are most desirable? How can this less easily 
quantifiable notion of customer responsiveness be 
incorporated in the decision making process?   
A number of researchers have considered customer 
responsiveness in their work, either explicitly or implicitly. 
Matson and McFarlane define responsiveness as ‘…the 
ability of a production system to respond to disturbances 
…which impact upon production goals’ [9]. Shafaei and 
Brunn define customer responsiveness simply as whether 
or not the customer demands are fully satisfied by the due 
date [10]. Wiendahl et al take a broader view of customer 
responsiveness across the whole supply chain [11].   
As we see with these three simple examples, one unmet 
challenge in addressing customer responsiveness is that 
there is no universally valid measure of responsiveness – 
different industries and applications value different 
characteristics in their production outcomes. For example, 
in the semiconductor industry, suppliers are evaluated 
based not only on what percentage of the total demand 
can be made available at the due date (a common 
requirement is at least 95%), but also on how quickly the 
remaining demand can be provided. In some other 
situations, any demand not filled at the original due date 
will be lost and therefore this is the only relevant criterion. 



The focus of our research is on using sequencing 
decisions not only to decrease makespan, but also to 
improve customer responsiveness. We seek to provide 
tools that support the development of automated policies 
which not only provide an initial product sequence but also 
advise the user on how to update this sequence as 
disruptions occur. In particular, we do not want to dictate 
how the system performance should be evaluated, but 
rather to allow users flexibility in assessing solution quality 
according to their individual situations. The goal of our 
research is thus not to develop optimal sequencing 
strategies for a single industrial situation but rather to 
develop a framework – both a vocabulary and a set of 
analytical tools – for analyzing a broad class of problems. 
 
2. DEFINITION OF A POLICY 
The existing state-of-the-art in production sequencing 
focuses either on makespan minimization or on 
resequencing when disruptions occur. We introduce the 
notion of a policy as a way to incorporate both of these 
goals and, more importantly, to provide manufacturers with 
planning tools that enable them to better achieve customer 
responsiveness, independently of how customer 
responsiveness is defined. 
We define a policy as a set of rules for controlling the 
sequencing of products during production. Given a set of 
input data, a policy defines what the initial sequence 
should be and how this sequence should be modified as 
disruptions occur. A policy is made up of three 
components: sequencing rules, update triggers, and 
strategies for anticipating demand changes.  
Sequencing rules: A sequencing rule takes as input a set 
of products and their corresponding demands and outputs 
a production sequence. For example, in the fixed lot size 
sequencing rule, an ordering of product types is given and 
a lot size is specified. Products are sequenced according 
to this ordering in batches of the specified lot size. For 
example, given a demand for 10 A’s, 8 B’s, and 4 C’s, with 
a product ordering of {A, C, B} and a lot size of 3, the 
resulting sequence would be: 
A A A   C C C   B B B   A A A   C   B B B   A A A   B B   A 

Another possible sequencing rule is the optimal makespan 
rule, in which products are sequenced such that, in the 
absence of any disruptions, the makespan will be 
minimized. Note that there is a virtually infinite set of 
possible sequencing rules. We do not constrain the rules, 
so long as they provide a well defined mapping from a set 
of products to a production sequence. 
Update triggers: Given the occurrence of disruptions, a 
sequence may no longer be optimal or even feasible. It 
may therefore be appropriate to update and resequence 
the remaining demand. It is not necessarily effective, 
however, to update the sequence every time there is a 
disruption. Update triggers specify when to update the 
sequence. Event-driven update intervals are triggered by 
the occurrence of an event which alters a parameter of 
production. Examples include demand changes of at least 
a specified percentage, machine breakdowns, or order 
cancellations. Periodic update intervals are triggered by a 
fixed time period, such as every 20 minutes or every 4 
hours. Hybrid update intervals are triggered both by event 
and time. For example, resequencing may occur at fixed 
time intervals but also when significant events occur. Note 
that when an update is triggered, a new sequencing rule 
may be applied – it is not required that the same 
sequencing rule be applied at all updates.   
Strategies for anticipating demand changes: 
Customers often increase, decrease, or cancel their orders 
after production has begun. Manufacturers can not only 
respond to such changes reactively by resequencing, but 

may also act proactively, using historical data to anticipate 
such changes. For example, a manufacturer may initially 
sequence production for only 80% of the initial demand for 
product B if it is predicted that orders for this product will 
decrease during production.  
A policy is simply a combination of sequencing rules, 
update triggers, and strategies for anticipating demand 
changes. An example policy begins by sequencing 80% of 
the demand of customer A and 100% of all other 
customers’ demand using a fixed lot sequencing rule. 
Whenever demand for any individual product changes by 
more than 20%, the sequence is updated, again using a 
fixed lot policy. Halfway through the production horizon, the 
sequence is again updated, now planning for the complete 
(updated) demand of customer A. Finally, at 75% of the 
time horizon, the sequence is updated according to the 
optimal makespan rule. Note that a policy clearly defines 
the production sequence, even in the presence of 
disruptions. Furthermore, a virtually infinite array of 
sequencing rules, update triggers, and strategies for 
anticipating demand changes makes the concept of a 
policy extremely general. 
 
3. A FRAMEWORK FOR POLICY EVALUATION 
It is unrealistic to attempt to develop a tool for generating 
optimal policies that apply to fully generic systems in which 
all disruptions are possible. The wide variety of system 
configurations and disruption distributions, along with the 
challenges associated with system variability, make this 
infeasible. Furthermore, even if such a tool could be 
developed, it is not clear what the objective should be, as 
not all users have the same values.   
Thus, instead of trying to prescribe policies for a single 
given industrial setting and situation, we seek to develop a 
generalized, simulation-based responsiveness frame-work 
to help users assess a variety of sequencing policies and 
to analyze how these policies perform under real world 
conditions. Figure 1 depicts the components of the 
framework.   

 

Figure 1:  Responsiveness framework. 
Inputs: The inputs of the framework start with the system 
configuration; this is currently restricted to pure serial lines. 
The user specifies the number of operational stages and, 
for each operational stage, a disruption distribution to 
describe the probability of machine failure (both frequency 
and duration). Next, the user must specify how much time 
each product spends in each operational stage. The 
changeover time between products must also be provided. 
Then, for each customer, the initial demand of each 
product is given, as well as the order due date. Each 
customer also has a probability distribution defining the 
likelihood and magnitude of order changes. In addition, an 
initial inventory can be specified for each product. Finally, 
the user specifies a policy, as defined in Section 2. Note 
that the input parameters are very general and thus this 
framework can be applied in many industrial 
circumstances. 
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Outputs: Different users will be concerned with different 
metrics in different circumstances. Therefore, instead of 
quantifying the policy’s value with a single metric, we seek 
to provide extensive reporting capabilities on a variety of 
levels. Natural metrics include: makespan, time spent in 
machine failure, time spent blocked, overtime (i.e. 
difference between makespan and production horizon), 
shortage and holding costs, over-production by product, 
and final demand by product. Because the system 
performance is being simulated repeatedly, it is natural to 
report across all instances the average, variance, and 
minimum and maximum values of these metrics. 
In addition to these, there are other characteristics that 
cannot be so concisely reported. Customer 
responsiveness falls into this category. Consider the case 
where two different policies result in two different 
outcomes. In the first policy, 99% of demand will be 
completed by the due date, but the remaining 1% will take 
an additional 24 hours. In the second policy, 95% of 
demand will be completed by the due date, with the 
remaining 5% completed within the next 30 minutes. 
Which policy is preferable? This depends on the particular 
situation – different users will have different preferences 
between these two policies. To help analyze the customer 
responsiveness of different policies, we have therefore 
developed a customer responsiveness curve. This curve 
shows, for every point in time from the due date until the 
final makespan the percent of demand still unmet. Figure 2 
depicts how three different responsiveness curves for 
three different policies might look; note that policy A is 
always preferred to policies B and C, but neither policy B 
nor policy C is dominant with respect to the other.  
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Figure 2: Customer responsiveness curves. 

Computational Structure: We have completed 
implementation of the basic framework using C++, with 
many different sequencing rules and distribution functions 
already in place. ‘Hooks’ exist to extend these to additional 
rules and distribution functions. The flow of the software 
begins with the user inputting all parameters necessary to 
specify the system configuration, the customer data, and 
the policy to be evaluated. Production is then simulated a 
user-specified number of times. At each instance, an initial 
sequence is generated based on the user-specified policy. 
The products then begin production in this sequence. 
Random disruptions are generated (for both machines and 
customer orders), the sequence is updated when 
triggered, and production resumes. The process repeats 
until all demand is met. For each instance, several metrics 
are captured. After all instances have been simulated, 
cumulative and average metrics are computed as well. 
 
4. SAMPLE ANALYSIS OF RESPONSIVENESS 
The purpose of this section is not to make significant policy 
suggestions, but rather to provide a simple demonstration 

of the flexibility and analytical powers of the framework. To 
do so, we explore the link between lot size, update 
frequency, and customer responsiveness in a given 
manufacturing setting.  
More specifically, we consider a flowshop with three 
products types and three operational stages. Each product 
is fairly balanced between operational stages, but is 
imbalanced with respect to the other products. Each 
product is associated with a single customer, who places 
an initial demand with a single due date and then during 
the production period randomly modifies this demand while 
maintaining this due date. We consider the following 
hypothesis: In a fixed lot size policy, it is preferable to have 
large lot sizes (which decrease production bottlenecks and 
therefore decrease makespan) and to update the 
production sequence frequently (so as to decrease the 
likelihood of overproduction).  
We analyze this hypothesis in the following section. The 
framework enables us both to support some aspects of this 
hypothesis, and also to identify some less intuitive 
outcomes that were not initially expected. 

4.1 Production Environment 
We consider a flowshop with three products and three 
operational stages. System characteristics are given in 
Table 1. The planning horizon (that is, time from the 
beginning of production to the final due date) is 3000 time 
units; for the sake of simplicity, we assume instantaneous 
changeover. 

A 10 9 11 100
B 2 3 4 110
C 8 7 7 95

Stage 1 
Time 
Units

Stage 2 
Time 
Units

Stage 3 
Time 
Units

Total 

Demand 
Products

 

Table 1: Processing times and initial demand 
Two types of random disruptions are considered: customer 
changes in order quantity and machine failures. 
Customer Order Changes: We assume three customers, 
each of whom has a due date of time 3000 time units. 
Customer A orders only product A and makes frequent, 
small changes in order quantity. Customer B orders only 
product B and makes frequent, medium changes. 
Customer C orders only product C and makes infrequent, 
large changes.   
Customer order changes are generated from a discrete 
probability distribution at every 50 time units.  The changes 
are cumulative over time. Table 2 shows these 
distributions. For example, at a given demand update, 
customer A will have no change with 0.97 probability; the 
order will increase by 2.5% with 0.015 probability; and the 
order will decrease by 2.5% with 0.015 probability.  

P % P % P % 
0. 97 0 0. 97 0 0.99 0
0.015 - 2.5 0.01 + 25 0.005 + 25
0.015 + 2.5 0.01 - 25 0.005 - 50

0.005 + 10
0.005 - 10

Customer B Customer CCustomer A

 

Table 2: Probability distribution 
 P - Probability, % - Percent change 

We assume that customer order changes cannot occur 
after the initial production horizon is complete, even if 
overtime is required to complete production. 



Machine Failures: We consider three types of machine 
breakdowns. The machine in operational stage 1 has 
frequent, short breakdowns; in operational stage 2 has 
infrequent, long breakdowns; and in operational stage 3 
has moderately frequent, very short breakdowns. These 
breakdowns are generated from uniform distributions, as 
depicted in Table 3. 

 

1 U (70,110) U (5,15)
2 U (150,300) U (20,40)
3 U (125,175) U (1,4)

MTTF   
Time Units

MTTR  
Time UnitsMachine

 

Table 3: Mean time to failure (MTTF) and mean time to 
repair (MTTR) 

Policy: Throughout the experiments, we assume the 
following policy. First, we do not incorporate any 
forecasting with regards to customer demand changes – 
we sequence products in the quantities given by the 
customer orders. Second, the initial sequence rule is fixed 
lot size, with given product sequence {A, B, C}. The lot 
size varies as part of the experiment. Third, sequence 
updates are triggered at fixed time intervals – every n units 
of time, the demand will be adjusted to take into account 
any order changes that have been made since the last 
update. This new demand will be resequenced according 
to the following rule. First, if the current product lot has not 
been completed, this lot will be continued, so long as it 
does not lead to overproduction of that product, given the 
newly updated demand. This is to maintain the consistency 
of the lot sizing approach. Then, the remaining products 
will be sequenced, again using the fixed lot size rule, but 
according to the newly updated product demand, starting 
with whichever product type would come next after the 
current product. 
For example, suppose we initially wanted to produce 20 
A’s, 20 B’s, and 20 C’s. With a lot size of 10, we might 
begin by producing 10 A’s, 10 B’s, and then 7 C’s before 
reaching the first update trigger. Suppose that during this 
time period, the demand for A had dropped to 18, for B 
had dropped to 8, and for C had dropped to 9. Then the 
updated sequence would have us next produce 2 C’s, 
finishing the existing lot but dropping its lot size from 10 to 
9 so as to not overproduce. The final step would be to 
produce a lot of size 8 A’s to complete its demand; product 
B has been overproduced by 2 units. 
This process of updating demand and resequencing 
repeats at every n time units, where the update interval 
also varies as part of the experiment. 

4.2 Experiments and Analysis 
We began with an experiment designed to highlight the 
relationship between product sequence and makespan. 
This experiment is fully deterministic – we did not permit 
customer order changes nor machine breakdowns. We 
considered lots from size one to 110 (i.e. the size at which 
each product type would be produced in a single lot). The 
framework was used to replicate production under this 
policy. Given that no random disruptions occur, a single 
iteration of the simulation produces the deterministic 
makespan for the production sequence. 
Note in Figure 3 that, as expected, increases in lot size 
lead to decreases in makespan. This is because smaller 
lot sizes require more frequent switching between product 
types, which leads to more frequent bottlenecks because 
of imbalances from across products. Beyond a certain 
point, however, the decrease in makespan slows 
dramatically with respect to lot size. Furthermore, many lot 
sizes lead to virtually identical makespans, as illustrated in 

Figure 4. The reason for this can be illustrated with a 
simple example. Consider lot sizes of 70 and 71. In the 
absence of any customer demand changes, the 
sequences will be:  
 70 A     70 B    70 C     30 A     40 B     25 C,  
and  
 71 A     71 A     71 C    29 A     39 B     24 C. 
These two sequences have the same number of shifts 
from one product type to another and therefore encounter 
virtually the same bottlenecks. 
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Figure 3: Makespan vs. lot size. 
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Figure 4: Makespan vs. lot size (20-110). 

The results of this experiment suggest that large lot sizes 
are preferable. However, this basic analysis only considers 
the makespan assuming no disruptions occur. 
Furthermore, there is a limited difference in makespan 
once the lot size exceeds a fairly low threshold 
(approximately 20). Therefore, we next sought to analyze 
how variability affects average makespan.  
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Figure 5: Average makespan with and without machine 

breakdowns. 
We began by simulating the system 10000 times, now 
adding in the possibility of machine breakdowns. Figure 5 
shows that, as expected, machine breakdowns delay 
production. There is a nearly constant difference between 



the two average makespan curves for lot sizes greater 
than 20. Interestingly, we noted that for small lot sizes, the 
absolute change is higher but the percentage change is 
lower. The absolute change increases with decreases in 
lot size largely due to the fact that, because the overall 
makespan is much longer, there are typically more 
machine breakdowns occurring overall during this time 
period. On the other hand, the percentage increase can be 
attributed largely to the fact that a decrease in lot size 
increases bottleneck time and thus decreases the amount 
of time during which machines are operating. Thus, it also 
decreases the likelihood that a machine failure will occur at 
a time when the machine is operational (that is, not 
bottlenecked waiting for a new product) and so the 
machine failure will lead to additional delays. 
We next began to incorporate changes in customer order 
quantities. First, we simulated the system 10000 times and 
computed for each of these instances the overall customer 
order changes.   
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Figure 6: Variability in total demand. 

Figure 6 shows that 80% of the time, total demand varied, 
with increases/decreases of up to 50%. These statistics 
understate the impact, however, because an increase in 
one product’s demand may be balanced by a decrease in 
another product’s demand. Figure 7 displays demand 
changes by individual product. 
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Figure 7: Variability in terms of product. 

Given the significant impact that customer order 
disruptions and machine failures can have on the system, 
we next considered how adding sequence updates to our 
policy could help to absorb these disruptions. We 
considered lot sizes of 1, 25, 50, and 100, with sequence 
updates triggered every 50, 750, 1500, or 3000 time units. 
At each of these updates the demand changes were 
incorporated and the production sequence was adjusted to 
avoid overproduction.  
Figure 8 shows the connection between update frequency 
and overproduction. As expected, the curves are 
increasing – as the time between sequence updates 
increases, so does the amount of overproduction. Note, 

however, that larger lot sizes result in significantly more 
overproduction, even with very frequent resequencing. 
This is because it is less likely that decreases in demand 
for the first products produced can be captured, as nearly 
all of these products will have been produced early in the 
production period.  
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Figure 8: Average overproduction vs. frequency update. 

   L - Lot size, T - Planning horizon. 
Figure 9 demonstrates that both overproduction and 
makespan increase as the time between updates 
increases. Note that there is a significant increase in 
makespan with a lot size of one relative to the other lot 
sizes considered; even though fewer products are 
produced (i.e. less overproduction occurs). This is 
because a lot size of one results in a substantial amount of 
bottleneck. However, lot sizes of 25, 50, and 100 are 
virtually the same under all update intervals. Presumably, 
the relatively small improvements in makespan found by 
using larger lot sizes are being absorbed by the increase in 
overproduction as lot size increases.   
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Figure 9: Average Makespan vs. frequency update.  

The results thus far suggest that the benefit of very large 
lot sizes (with regards to expected makespan) can be 
achieved with smaller lot sizes (for example, 25 instead of 
100), and that these smaller lot sizes result in less 
overproduction, independent of update frequency. The 
final question we set out to address was whether customer 
responsiveness was impacted by lot size and update 
frequency. Figures 10 and 11 show customer 
responsiveness curves for lots of size 1 and 100, with 
update frequencies of 50, 750, 1500, and 3000. 
In both cases, we see that more frequent sequence 
updates are dominant for a given lot size. This is not 
surprising given the previous results. More frequent 
updates lead to less overproduction. Instead, time is used 
to produce desired products and thus at the end of the 
production horizon, a larger percent of demand has been 
met. Beyond this time point, no further customer order 
changes occur and thus the remaining production occurs 
in a similar fashion, independent of the original update 



frequency. Notice that the curves are steeper for larger lot 
sizes, as production of the remaining demand occurs more 
quickly independent of the initial outstanding quantity. 
In summary, we observe that – as expected – larger lot 
sizes can be used to decrease makespan and more 
frequent sequence updates can be used to avoid 
overproduction. However, less intuitively, we observe that 
larger lot sizes lead to more overproduction, and that the 
benefits of reduced makespan can be counter-acted by 
this increased production, both in terms of actual time to 
meet customer demand, and also in terms of the cost of 
excess inventory due to the overproduction. Furthermore, 
we have observed that the decrease in makespan as lot 
sizes increase is relatively small after a certain point, due 
to the fact that the number of changeovers from one 
product type to the next remains quite small. Thus, the 
benefits of decreased makespan can be achieved with 
more moderate lot sizes while still achieving the benefits of 
reduced overproduction through the use of frequent 
sequencing updates. 
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Figure 10: Customer responsiveness curve – lot size 1. 
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Figure 11: Customer responsiveness curve – lot size100. 
 
5. SUMMARY AND CONCLUSIONS 
Manufacturers are faced with frequent disruptions that 
impact the quality of their production plans. Resequencing 
is a relatively simple and low-cost way to address these 
disruptions so as to provide improved customer 
responsiveness. We have presented a framework to 
evaluate different policies for controlling sequencing 
decisions in production. A key strength of this framework is 
that it does not dictate how system performance should be 
evaluated. Rather, it provides flexibility to recognize that 
different users have different definitions of customer 
responsiveness and thus use different criteria for 
evaluating solution quality.   
We provided a simple example to demonstrate how this 
framework can be used. Within the analysis, we both 
provided support for certain intuitive expectations and also 
identified areas where our intuition was incorrect. These 

results can be used to develop ideas for improved policies; 
the framework can then be used to assess these new 
policies.  
Although the existing framework provides opportunity for 
many different types of analyses, additional extensions will 
be beneficial as well. These include penalties or delays for 
resequencing and product changeover; new sequencing 
rules, disruption distributions, and metrics; and more 
explicit incorporation of costing issues. More generally, we 
would like to permit a broader class of system 
configurations, such as serial parallel lines with crossover, 
so that the framework can be applied in an even greater 
number of circumstances.  
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