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ABSTRACT

Mixed-model assembly lines have been recognized as a major
enabler to handle product variety. However, the assembly pro-
cess becomes very complex when the number of product vari-
ants is high, which, in turn, may impact the system performance
(quality and productivity). The paper considers the variety in-
duced manufacturing complexity in manual, mixed-model as-
sembly lines where operators have to make choices for vari-
ous assembly activities. A complexity measure called “Operator
Choice Complexity” (OCC) is proposed to quantify human per-
formance of making the choices. The OCC takes an analytical
form as an information-theoretic entropy measure of the average
randomness in a choice process. Meanwhile, empirical evidences
are provided to support the proposed complexity measure. Based
on the OCC, models are developed to evaluate the complexity
at each station, and for the entire assembly line. Consequently,
complexity can be minimized by making systems design and op-
eration decisions, such as error-proof strategies and assembly se-
quence planning.

1 INTRODUCTION

Traditional mass production was based on dedicated assembly
lines where only one product model was produced in very large
quantities. Such systems can achieve high productivity by us-
ing principles of economies of scales and work division between
assembly stations [1]. However, in today’s environment, where
customers demand high product variety and short lead time, mass
customization has been recognized as a new paradigm for man-
ufacturing [2, 3]. Mass customization promises individualized
products at mass production cost. As a result of such paradigm
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change, assembly systems must be designed to be responsive
to customer needs while at the same time achieving mass pro-
duction’s quality and productivity. Mixed-model assembly lines
(MMAL) have been recognized as a major enabler to handle in-
creased variety. An MMAL typically takes the form of a flow
line. The topics of effectively assigning tasks to stations and bal-
ancing the lines for the multiple product types have been active
research areas [4].

Various industries are using mixed-model assembly lines.
The variety of products offered in these lines has increased dra-
matically over the last decade. For example, in a typical auto-
mobile assembly plant, the number of different vehicles being
assembled can reach tens of thousands in terms of the possible
build-combinations of options.

Such an astronomical number of build-combinations un-
doubtedly present enormous difficulties in the design and opera-
tion of the assembly systems. It has been shown by both empir-
ical and simulation results [5-7] that increased vehicle product
variety has significant negative impact on the performance of the
mixed-model assembly process, such as quality and productivity.
Such impact can result from assembly system design as well as
people performance under high variety. The effect from the latter
persists since only limited automation can be implemented in the
automobile final assembly [8—10]. Thus the questions presented
here are two fold: how variety impacts people and system perfor-
mance, and how to design assembly systems and organize pro-
duction to allow high product variety without sacrificing quality
and productivity.

One of the possible approaches to assess the impact of prod-
uct variety on manufacturing system performance is to investi-

Copyright (©) 2006 by ASME



gate how product variety complicates the mixed-model assembly
process. However, only limited research has been done on defin-
ing manufacturing system complexity. For example, MacDuffie
et al. [6] established empirical relationship between complexity
and manufacturing system performance. They defined product
mix complexity by looking at product variety (product mix and
its structure) in assembly plants. According to the differences
in the levels of product variety, three types of product mix com-
plexity were defined in terms of empirical scores: Model Mix
Complexity, Parts Complexity, and Option Complexity. By using
statistical analysis, significant negative correlation between the
complexity measures and the manufacturing performance was
found. The result was based on the data from 70 assembly plants
worldwide who participated in the International Motor Vehicle
Program at M.I.T.

Besides empirical studies, attempts have also been made to
analytically define complexity in manufacturing. For instance,
complexity has once been associated with the amount of effort
needed to make a part. The effort was quantified by a logarith-
mic function of the probability of achieving a certain geometric
precision and surface quality in machining [11]. The function
is widely known as Shannon’s Information Entropy. Similarly,
Fujimoto and Ahmed [12] defined a complexity index for as-
sembling. The index takes the form of entropy to evaluate the
assemblability of a product. The assemblability was defined as
the uncertainty of gripping, positioning, and inserting parts in
an assembly process. Also, complexity has been extended as a
measure of uncertainty in achieving the specified functional re-
quirements in axiomatic design [13].

Recently, complexity has been defined in an analytical form
for manufacturing systems as a measure of how product vari-
ety complicates the process. Fujimoto et al. [14] introduced a
complexity measure based on product structure using informa-
tion entropy in different assembly process planning stages. By
reducing the complexity, they claimed that impact of product va-
riety on manufacturing systems could be reduced. Deshmukh et
al. [15, 16] defined an entropic complexity measure for part mix
in job shop scheduling. The complexity quantifies the difficulty
associated with making scheduling decisions for the job shop,
in which several types of products are manufactured simultane-
ously. An information-theoretic entropy measure of complexity
is derived for a given combination and ratio of the part types.
However, the complexity is not applicable for mixed-model as-
sembly, which has a flow line or various hybrid configurations.

In summary, there is a general agreement that (i) product
variety does increase the complexity in manufacturing systems,
and (ii) information entropy is an effective measure of complex-
ity. However, in order to analyze the impact of variety on manu-
facturing complexity in mixed-model assembly systems, one has
to take into consideration the characteristics of the assembly sys-
tem, such as system configuration, task to station assignment,
and assembly sequences, etc. In addition, there is a lack of un-
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Figure 1. An illustration of a Product Family Architecture (PFA) and its
mixed-model assembly line

derstanding on the mechanisms through which variety impacts
manufacturing.

To address the above issues, this paper defines new mea-
sure of complexity that depends on the integration of both prod-
uct variety and assembly process information, and then develops
models for evaluation of complexity in multi-stage mixed model
assembly systems. The paper is organized as follows. Section
2 establishes a measure of operator choice complexity which re-
sults from the analysis of choices and choice process in mixed-
model assembly operations. Moreover, the section also provides
both theoretic and empirical justifications for the viability of the
measure. Section 3 presents the model of system complexity for
mixed-model assembly lines, where models at the station and
system levels are investigated. Additionally, the influence of pro-
cess flexibility and commonality is analyzed using numerical ex-
amples. Then potential applications for assembly system design
by using the model are suggested in Section 4. Finally Section 5
concludes the paper and proposes future work.

2 MEASURE OF OPERATOR CHOICE COMPLEXITY
This section begins with a brief introduction to mixed-model as-
sembly lines. Then it describes the choices and choice processes
on the line to help theoretically define the choice complexity.
Correspondences between theoretical definition and empirical re-
sults are discussed according to a group of studies from cognitive
ergonomics.

2.1 Mixed-Model Assembly Line

Figure 1 illustrates an example of a product structure and its cor-
responding mixed-model assembly line. The product has three
features (F;); each feature has several variants (e.g., V;; is the j’h
variant of F;). The product structure is represented by a Product
Family Architecture (PFA) [17].

The PFA shows all the possible build-combinations of the
customized products by combining the variants of each feature.
For example, in Fig.1, we can have different end products by
choosing one variant for every feature. Moreover, we represent
the product mix information by a matrix P, where P;; is defined
as the demand (in percentage) of the j* variant of the i’ fea-
ture. For instance, the P matrix for the product in Fig.1 is the
following:
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P31 P32 P33 P34

Each row corresponds to the demands (in terms of mix ratio) for
the variants of each feature, satisfying:

Y pij=1vi )
J

In mixed-model assembly, one variant of every feature is
selected and assembled sequentially along the flow of the assem-
bly line. For example, as depicted in Fig.1, Vi; is chosen for Fi,
Vay for F>, and V3; for F3. Quite often, this assembly process is
accomplished manually. Operators at every stations must make
correct choices among a number of alternatives. The choices
include choosing the right part, tool, fixture, and assembly pro-
cedure for the variant.

2.2 Choices and Choice Processes

At each assembly station, the operator must choose the correct
part from all possible variants according to customers’ order.
(The order is usually written on a production tag/manifest at-
tached on the partially completed assemblage.) This process of
selecting the right part is continuing during the day. To better
understand the process, we define it choice process.

The choice process consists of a sequence of choices with
respect to time. It can be modeled as a sequence of random
variables, each of which represents choosing one of the possi-
ble alternatives. Mathematically, it can be considered as a dis-
crete time discrete state stochastic process {X;,t = 1,2,...}, on
the state space X; € {1,2,...,M}, where ¢ is the index of dis-
crete time period, M is the total number of possible alternatives
(parts) which could be chosen during each period. More specifi-
cally, X; = m,m € {1,2,...,M}, is the event of choosing the m'"
alterative during period 7.

In the simplest case, if the choice process is independent
and identically distributed (i.i.d.), we can use a single random
variable X (instead of X;’s) to describe the outcome of a choice.
Furthermore, if we know all the alternatives of X and their dis-
tributions, the probability of a choice taking the m'* outcome is
known as p,, = P(X = m), for m = 1,2,...,M. In the following
discussions, we limit ourselves by assuming i.i.d. sequences.

2.3 Operator Choice Complexity

To characterize the operator performance in making choices, we
define the term operator choice complexity (or choice complex-
ity) as follows.

Definition: Choice complexity is the average uncertainty or ran-
domness in a choice process, which can be described by a
function H in the following form:

1/2 1/2
1/2
1/3
2/3.41/3
1/3>1/6
Figure 2. Decomposition of a choice from three possibilities [18]

178 1/2

M
om)=—C- Y pm-logpn  (3)

m=1

H(X)=H(p1,p2;. -

Theoretical Properties: The following seven properties of the
function H as described in [18] make it suitable as a measure of
choice complexity.
1) H is continuous in p,,, i.e., small changes in p,, should result
in only small changes in choice complexity.
2) If p,,’s are brought closer to each other, H would increase. Put
alternatively, any change towards equalization of pi1,p2,...,pu
should increase H. For a given M, H is a maximum and equal
to logM when all p;’s are equal (i.e., ﬁ). In this case, H is a
increasing function of M. This case is also intuitively the most
uncertain situation to make a choice, since the operator is con-
sidered to be non-informative [19].
3) If a choice process is broken down into two successive stages,
the original H is the weighted sum of the individual values of
H. This is illustrated in Fig.2, where H(}, § g) =H( D+
3H(3,5).
4) H = 0 if and only if all the p,’s but one are zero, this
one has the value of unity, i.e., H(1,0,...,0) = H(0,1,...,0) =
H(0,0,...,1) =0. Thus only when we are certain of the outcome
does H vanish and there exists no choice complexity. Otherwise
H is positive.
5) H does not change when an additional alternative with no
chance to happen is added into the original system.
6) H is a symmetrical function of pi,ps,...,pym, i.e., if the
probabilities of choices are permuted among the alternatives, the
amount of choice complexity does not change.
7) Suppose we have two successive choice processes, X (choices
of tools) and Y (choices of fixtures) with M alternatives (num-
bered 1 to M) for the first and N for the second (numbered 1 to
N). Let p(x,y) be the probability of the joint event {X = x,Y =
v}, where x € {1,2,... .M} and y € {1,2,...,N}. The complex-
ity of the joint choice is:

M N
=Y Y px,y)logp(x,y) @)
i=1 j=1
while,
M N
H(X) ==Y p(x,y)log ) p(x,y) Q)

i=1 j=1
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N M
H(Y)=—=Y p(x,y)log) p(x,y) (6)
j=1 i=1
It is easy to show that,
H(X,Y)<H(X)+H(Y) (7)

with equality achieved only if the two choices are independent,
ie, p(x,y) = p(x)p(y), where p(x) £ P(X =x) , and p(y) £
P(Y =y).

Thus the entropy function H possesses most of the desirable
properties to be one of the possible measures of choice complex-

ity.

2.4 Correspondences between Theoretical and Em-
pirical Studies

Results similar to the seven theoretical properties can be found in
human cognitive experiments. The experiments were conducted
to assess human performance when making choices. Coinciden-
tally, information entropy was found to be one of the effective
measures. The performance of human choice-making activities
was investigated by measuring average reaction times, i.e., how
quickly a person can make a correct choice to a stimulus. One
of the earliest studies was done by Merkei in 1885, described by
Woodworth [20]. In the experiment, digits 1 through 5 were as-
signed to the fingers of the right hand and the Roman numbers I
through V were assigned to the fingers of the left hand. On any
given set of trials, the subject knew which of the set of stimuli
would be possible (e.g., if there were three possible stimuli, they
might be 3, 5, and V). Merkel studied the relationship between
the number of possible stimuli and the choice reaction time (RT).
His basic findings are presented in Fig.3(a), where the relation-
ship between choice RT and the number of alternatives was not
linear.

This relationship in Fig.3(a) has been further studied by
a number of researchers since Merkel’s original observations.
Among them, the most widely known one was Hick [21]. He
discovered that the choice RT is linearly proportional to the loga-
rithm of the number of stimulus alternatives if all the alternatives
are equal likely, see Fig.3(b), i.e.,

Mean Choice RT = a+b - [log, n] 8)

where n is the number of stimulus-response alternatives, a and
b are constants, which can be determined empirically by fitting
a line to the measured data. This relation came to be known as
Hick’s Law (or Hick-Hyman Law), which was regarded as one
major milestone in the area of cognitive ergonomics.
Coincidentally, the term [log, n] is exactly the information
entropy calculated in Eqn.(3) if all the p,,’s are equal, which fol-
lows from the result that the choice process is i.i.d. and all the
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Figure 3. Mean choice RT as (a) a nonlinear function of the number
of stimulus-response alternatives [20]; (b) a linear function of stimulus
information, or log, of the number of alternatives [21], reprinted from [22]
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Figure 4. Choice RT for three different ways of manipulating the stimulus
information H, reprinted from [24], using data from [23]

alternatives occur equal likely. The above analogy was first dis-
covered by Hyman [23], where he concluded that, “The reaction
time seems to behave, under certain conditions, in a manner anal-
ogous to the definition of information”.

Hyman [23] also realized that, according to Shannon’s defi-
nition of information entropy, he could change information con-
tent in the experiment by other means. Thus, in addition to
varying the number of stimuli and letting each one of them oc-
cur equally likely in Hick’s [21] experiment, he altered stimu-
lus information content simply by (i) changing the probability of
occurrence of particular choices, (ii) introducing sequential de-
pendencies between successive choices of alternatives, see Fig.4.
Thus, naturally enough, we can use H to replace the [log, n] term,
Eqn.(??) becomes,

Mean Choice RT =a+b-H )

Because of the significance of this generalization, Hick’s
Law is also referred as the Hick-Hyman Law.

Moreover, it was suggested in Welford [22] that the infor-
mation measure is adequate to assess human performance, since
it provides a valuable means for combining reaction time and er-
rors (i.e., speed and accuracy) into a single score.
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2.5 Summary

According to both theoretical properties and empirical results,
the entropy-based quantity H is suitable to measure operator
choice complexity or choice complexity. Therefore, we propose
to use the following form to quantify the value of choice com-
plexity.

Choice Complexity = o(a+b-H),00 >0 (10)

The form is similar to that of the Hick-Hyman Law. It only
differs in a positive scalar o, served as a weight to a specific
choice process. In other words, the choice complexity is positive
monotonic to the amount of uncertainty embedded in the choice
process during the manual assembly process. Since Eq.(10) takes
a simple linear form with constants o, a, and b, the only remain-
ing part to be determined is the value of H when evaluating com-
plexity. By incorporating information from product design, line
design and operation, one can develop models and methodolo-
gies to quantify the information content in terms of the various
operator choices in a mixed-model assembly process.

3 MODEL OF SYSTEM COMPLEXITY FOR MIXED-
MODEL ASSEMBLY LINES

This section defines the operator choice complexity in the station
level by simply extending the previous definition for a single as-
sembly activity. Then complexity in the system level is exam-
ined after a unique propagation behavior of complexity is found.
Moreover, process flexibility and commonality is taken into ac-
count when analyzing complexity. Finally a complexity model is
proposed for multi-stage assembly systems.

3.1 Station Level Complexity

On a station, in addition to the part choice mentioned in Section
2, the operator may perform other assembly activities as well
in a sequential manner, and some examples of these choices are
briefly described as follows, see Fig.5.

Fixture choice: choose the right fixture according to the base
part (i.e., the partially completed assemblage) to be mounted
on as well as the added part to be assembled.

Tool choice: choose the right tool according to the added part to
be assembled as well as the base part to be mounted on.
Assembly procedure choice: choose the right procedure, e.g.,
part orientation, approach angle, or temporary unload of cer-
tain parts due to geometric conflicts/subassembly stabilities.

According to Eqn.(10), we define the associated complexity
at the station as part choice complexity, fixture choice complex-
ity, tool choice complexity, and assembly procedure choice com-
plexity respectively. All these choices contribute to the operator
choice complexity.

Without loss of generality, we number the sequential assem-
bly activities in Fig.5 from 1 to K and denote C; as the total

Station 1 Station 2 Station 3

Level > \/VJ\(V)\/V}\\ /V\/v\ ‘/J:'\
| [ { )
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Station -] Fixture Choice
Level
---] Tool Choice

{ Assembly Procedure Choice |

Figure 5. Choices in sequential assembly activities at one station

complexity at station j, which is a weighted sum of the various
types of choice complexity at the station.

K
Ci=Y ok(ads+ok-HY) 0k >0k=12,... K (11)
k=1

where oc’;, are the weights determined by the task difficulty of
the k' assembly activity at station j; a’]‘-’s and b’;’s are empirical
constants depending on the nominal human performance similar
to that of the choice reaction time experiments; H jk is the entropy

computed from the variant mix ratio relevant to the k' activity
at station j. For simplicity and without loss of generality, we set
a§ =0,b% =1,V,k. Then Eqn.(11) reduces to,

K
Ci=Y obHf ob >0k=1.2,... K (12)
k=1

3.2 Propagation of Complexity
By Eqn.(12), complexity on individual stations is considered as
a weighted sum of complexities associated with every assembly
activities. Among them, some activities are caused only by the
feature variants at the current station, such as picking up a part,
or making choices on tools for the selected part. The complexity
associated with such assembly activity is called feed complexity.
However, the choice of fixtures, tools, or assembly procedures
at the current station may depend on the feature variant that has
been added at an upstream station. This particular component of
complexity is termed as transfer complexity.

A formal definition of the two types of complexity is given
below. Assume a current station j:

Feed complexity: Choice complexity caused by the feature
variants added at station j.

Transfer complexity: Choice complexity caused by the fea-
ture variants already added at an upstream station, i.e., sta-
tion i (i precedes j, denoted as i < j).

Transfer complexity exists because the feature variants added on
the previous station i may affect the process of realizing the fea-
ture at station j, causing tool changeovers, fixture conversions,
or assembly procedure changes.
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Feed Complexity C;
Figure 6. Complexity propagation scheme
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Figure 7. Complexity propagation of the example in Fig.1

The propagation behavior of the two types of complexity
is depicted in Fig.6, where, for station j, the feed complexity
is denoted as C;; (with two identical subscripts), and the trans-
fer complexity is denoted as C;; (with two distinct subscripts to
represent the complexity of station j as caused by an upstream
station 7). Thus the transfer complexity can flow from upstream
to downstream, but not in the opposite direction. In contrast, the
feed complexity can only be added at the current station with no
flowing or transferring behavior.

Hence the total complexity at a station is simply the sum
of the feed complexity at the station and the transfer complexity
from all the upstream ones, i.e., for station j,

Ci=Cjj+ ¥, G (13)

Viii<j

Compared with Eqn.(12), we may find equivalence relationships
term by term between the two sets of equations. We illustrate
this in the following section with examples.

3.3 Examples of Complexity Calculation

In this section, by continuing the example in Fig.1 which is re-
drawn in Fig.7, we demonstrate the procedures of calculating
complexity at a station. More specifically, we will consider ex-
amples with or without process flexibility (and commonality) re-
spectively.

3.3.1 Example without process flexibility In
Fig.7, on the one hand, four sequential assembly activities are
identified at station 3, complexity is expressed according to
Eqn.(12) by assigning subscripts 1 to 4 as part choice com-
plexity, fixture choice complexity, tool choice complexity, and
assembly procedure choice complexity respectively.

C3 = 0 Hi + 02H? + 03 H3 + o3 HY (14)

If we know from the process requirements at the station that,

1. One of the four parts, i.e., variants of F3, is chosen according
to customer order;

2. One of the four distinct tools is chosen according to the cho-
sen variant of Fz;

3. One of the two distinct fixtures is chosen according to the
variant of F> installed at station 2;

4. One of the three distinct assembly procedures is chosen ac-
cording to the variant of Fj installed at station 1.

On the other hand, the propagation scheme in the system
level can be examined from the viewpoint of feed complexity
(C33) and transfer complexity (Cy3 and C»3), which is expressed
according to Eqn.(13) as follows.

G =C33+Ci3+Co3 (15)

There exist correspondences between Eqns.(14) and (15), or
equivalently, Eqns.(12) and (13), which are shown below.

; P I
Part choice complexity: o3 H; = o] Cs3
o
al+o3 Cas
Fixture choice complexity: 03H? = Cp3
Assembly procedure choice complexity: a3H; = Ci3

Tool choice complexity: 03 H; =

Note, H31 = H33 = H3, where Hj is the entropy associated with
the variants added at station 3; and similarly, H; = H, H§ = H;.
By complexity propagation, we have:

Feed complexity: C33 = alH] +03H;
Transfer complexity: Cr3 = (X%H32, Ciz= chHgt

As a result, the sources of complexity are identified. The
H terms are now easily calculated. That is, if an H term corre-
sponds to the feed complexity, it is a function of the mix ratio of
the current station; however, if an H corresponds to the transfer
complexity, it is a function of the mix ratio of the station which
is specified in the first subscript of its corresponding C;;, i.e., sta-
tion i.

Now, let us consider a numerical example, assume the P ma-
trix in Eqn.(1) takes the following values.

050203 0
P=|0505 0 0 (16)
0.30.30.20.2

Then,
H} = H} = Hy; = H(0.3,0.3,0.2,0.2) = 1.971 bits
H} = Hy = H(0.5,0.5) = 1 bit
Hy = Hy = H(0.5,0.2,0.3) = 1.485 bits (17)

and,
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G =C33+Ci3+Co3
= 1.971a} +1.97103 4 o4 + 1.48503 (18)

For simplicity, assuming OL% = (xg = 0@ = cht = 1, we finally ob-

tain the total complexity at station j.

G =1971+1.971+ 1+ 1.485 = 6.427 bits (19)

3.3.2 Influence of process flexibility and com-
monality So far, we have illustrated in Eqns.(17) and (19)
an example of calculating choice complexity with no flexibil-
ity or commonality in the manual assembly operations. How-
ever, flexibility is usually built into assembly systems such that
common tools or fixtures can be used for different variants as to
simplify the process. That is, flexible tools, common fixtures, or
shared assembly procedures are adopted to treat a set of variants
so that choices (of the tools, fixtures, and assembly procedures)
are eliminated. Since fewer choices are needed, complexity re-
duces. However, not all the assembly processes can be simpli-
fied by flexibility strategies. Sometimes, flexible tools, common
fixtures, or shared assembly procedure may require significant
changes or compromise in product design and process planning,
which is usually costly if not impossible. To characterize the im-
pact of flexibility and commonality, i.e., to establish the relation-
ship between product feature variants and process requirements,
a product-process association matrix (denoted as A-matrix) is de-
fined in the sequel.

We again use the example in Fig.7. At station 3, we consider
fixture changeover, and it is denoted as the k' assembly activity.
Which fixture should be used in assembling F3 at station 3 is
determined by the variant of F> assembled previously at station
2. If no flexibility or commonality is present, fixture choice is
needed at station 3 by observing feature F; (installed on station
2) according to the following rules,

Use fixture 1, if V3 is present;
Use fixture 2, if V5, is present.

Thus there are two states in the fixture choice process; the map-
ping relationship can be expressed in a A-matrix as follows.

Ay = Ll) ﬂ (20)

where A%, denotes the A-matrix for the k" activity at station 3 as-
sociated with the variants at station 2; the columns are the states
of the k" activity at station 3, rows are the variants of the feature
F, affecting the activity. The ones in the cells establish associa-
tions between the state in the column and the variant in the row.

A general form of the A-matrix for any assembly activity is
given in as follows.

5171 61_’2 Sl,m
A=l i @1
On1 On2 ... Oum

where,

1 Variant s at station i requires k" activity
o5 = to be in state 7 at station j (22)
0 Otherwise

m, n are the cardinality of states and variants respectively.
By definition, the A-matrix satisfies the following properties:

LY",8,;=1"fors=12,...,m
2. %0 8> forr=1,2,....m;
3. n>m.

Property (1) holds because one variant can lead to one and only
one state. Property (2) holds because each state must be associ-
ated with at least one variant; otherwise, the column associated
the empty state can be eliminated, and the size the matrix shrinks
by 1. Lastly, property (3) holds because the maximal number of
states cannot exceed the total number of variants. That is, in the
extreme case of non-flexibility, each variant requires the charac-
teristic to be in a distinct state, and the A-matrix becomes a unit
matrix of dimension being the number of variants.

Consider the example in Fig.7 again, however, if a common
fixture is adopted, the same fixture can be used no matter V,; or
Va2, is mounted on station 2. Thus, by definition, the A-matrix
becomes simply:

10
which should be reduced to:
1
A = [ i ] (24)

By using the A-matrix, we are now capable of calculating
the H terms when flexibility or commonality is present in the
process. Define a vector qffj = [q1,92,---,qm), where g;,t €
{1,2,...,m} is the probability of the k' activity being in state
t at station j due to the variants added at station i, satisfying
Y ,gs = 1. By the definition of the product mix matrix P in
Eqn.(1) and the A-matrix in Eqn.(21), the following relationship
is obtained:

q{'(j =191,92,---,qm] = Pi. X Ai'(j (25)

where P;. is the i row of the matrix P, representing the mix
ratio of the feature (i.e., feature F; in the example) assembled on

station i. Thus, the corresponding H term is:
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Hj = H(ql;) = -

t

m
qr -10g, g (26)
=1
Revisit the example in Fig.7. When calculating the H term
(H3p) corresponding to the fixture choice complexity, we have

the following results for fixture choices at station 3.

Case 1 Use dedicated fixtures, i.e., a different fixture for each
variant. By the A-matrix in Eqn.(20), we have:

QG = [‘11 ‘12] =Py x A3,
10
—[050.5] x [O 1] ~050.5]
= H; = Y71 qi-logy ;- = 0.5l0g, g's +0.5l0g, g5 = 1 bit
which duplicates exactly the result in Eqn.(17).
Case 2 Common fixture is used. By the A-matrix in Eqn.(24),
we have:

@ =[q1 2] =P2. xA3; =[050.5] x [}] =[1]

= H; =Y, qi-logy ;- = 1-log; 1 = 0 bit
Since fixture is common to the process of assembling F3
with variants of F>, no choice is needed.

Assume we have flexibility or commonality in fixture, tool,
assembly procedures respectively, which is expressed by the A-
matrices in Table 1. As a summary, the table also demonstrates
a comprehensive numerical example to calculate complexity at
station 3. The results show a reduced value of choice complexity
compared with Eqn.(19) because of the flexibility or commonal-
ity added.

Table 1. Numerical Example of Complexity Calculation

No.| Activity A-matrix q-vector | H-term
1 000 37
Part ;|01 00 L3 .
1 Pick-up A, = 0 0 1 oll9= .2 H;'=1.971
00 0 1 2
) Fixture AL = 1 : 7 H:2=0
Conversion =y a, =[1] 3
o]
r 7
Tool s |10 .| .
3 Changeover As = 0 1 q;, = 4 H;7=0.971
_O 1_
Assembly LY r g7
4 | Procedure AL=10 1 q, = H;*=0.722
Change 1 0] L2
Total complexity at station 3 with equal weights 3.664

agiHy

Hy H,
H, —»{ Station 1 » —»{ Station i-1 Station i Station i+1 F} —»{ Station n ‘
X
H, Hi, N Se——— A /A
N @ 7
Transfer Complexity Feed Complexity S~ _-
———> Incoming Complexity e = 7 -
Aipll;

— — — ) Outgoing Complexity
Figure 8. Propagation of complexity at the system level in a multi-stage
assembly system

3.4 System Level Complexity Model

In general, consider an assembly line with n» workstations, num-
bered 1 through n sequentially, see Fig.8. The mix ratio in
Eqn.(1) is known. Using Eqn.(3), we can obtain the entropy H
for the variants at each station according to their mix ratios.

The propagation of complexity in a multi-stage system can
be analyzed by considering how the complexity of assembly op-
erations (choices) at a station is influenced by the variety added
at its upstream stations (incoming complexity), as well as how
variants added at the station impact the downstream stations (out-
going complexity). The incoming complexity for stations in the
system can be calculated in the following way:

Station 1: CIN = Cy; = ag, Hy

Station 2: Cén = Coo +Ci2 = appHy + ajpH

Station i: CI" = Co;+Cii+Coi+ ... +Ci_1
=apiHo+aiHy +ayHh+ ... +ai—1 ;Hi_1

Station n: C,i,n =Con+Cin+Cop+...+Cuin
= appHo +anHy +aonHa + ... +ay 1 nHy

where,

Cl-in — The incoming complexity of station i, i = 1,2,...,n;
H; — Entropy of variants added at station i, i = 1,2,...,n—1;
Hy — Entropy of variants of the base part;
a;j — The coefficient of the impact (in term of choice complexity)
on the assembly operations at station j due to the variants
added at station i, i.e.,
> 0 if i < j and there exists impact from station i to j
ajj§ = 0if i < j but no impact
=0ifi>j

Or equivalently, by using a matrix representation, a comprehen-
sive model can be obtained as follows:

C in aol 0o ... 0 Hy
G apy app ... 0 H
= . . X . 27)
: . 0 :
Cy aon Alp -+ Qp—1pn H,

or,
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Figure 9. Incoming and Outgoing Complexity Charts

Ccin— AT xH (28)

where C!! is the incoming complexity vector of size n for the
system, with its i/ entry being the incoming complexity at sta-
tion Z, for i = 1,2,...,n; A is the characteristics matrix of size
n x n, which characterizes the interactions between stations (due
to the feature variants added on the stations) in term of choice
complexity; and H encapsulates product variety information in-
cluding the number of variants and their distributions.

The outgoing complexity at station i, Ciollt is the amount of
complexity flowing out of the station, influencing downstream
operations. It can be analyzed by following a similar approach
as used in Eqn.(27) or (28).

4 POTENTIAL APPLICATIONS

Once the propagation of complexity is understood and models
developed, they can be applied to the design of mixed model
assembly systems. Several potential applications are sketched
below.

4.1 Performance Evaluation and Root Cause Identifi-
cation Using Complexity Charts

Following the procedures in Section 3.4, we can analyze the in-
coming and outgoing complexity for each station and plot them
against the station position in a multi-stage assembly system, see
Fig.9. As a result, the stations with high incoming complexity
are the potential stations where error-proofing strategies need to
be provided to minimize the influence of complexity. Alterna-
tively, flexible, automated assembly operations may be applied
to minimize the impact of variety on operator performance.

In Fig.9, the outgoing complexity also shows how much in-
fluence the variants at one particular station have on its down-
stream operations. As a result, the outgoing complexity implies
the root cause of the choice complexity in the system. Thus de-
cisions from product design, such as commonality strategies, op-
tion bundling policies need to be considered to minimize outgo-
ing complexity.

4.2 Influence Index and System Configuration Design
For any station j, once the values of incoming and outgoing com-
plexity are found, we may define an index, called influence index,
as follows:

out
_ Cj

T Hin
Gj

I (29)

The index quantifies how much relative influence the vari-
ants added at station j have in the operations of the other stations.
To illustrate, in Fig.8, if every complexity streams have one unit
of complexity, we can calculate the influence index for station j,
j=1,2,...,n by simply counting the number of streams:

__ #of Outgoing Complexity Streams  n— j

- = 30
/" # of Incoming Complexity Streams j (30)

Obviously,

I = n— 1, the first station potentially has the maximal influ-
ence on the others;
I, = 0, the last station has no influence on the others.

Thus, in such a sequential manufacturing process, the influence
index is monotonically decreasing with respect to j. Hence we
can conclude that operations at the later stations are more vulner-
able to be affected by the variants assembled at the previous ones.
Therefore, by wisely assigning assembly tasks (i.e., the func-
tional features) onto stations, it is possible to prevent complexity
streams from propagating. One of the intuitive approaches is to
assign features with more variants to the stations of smaller influ-
ence index (downstream stations), and vise versa. In this aspect,
the proposed complexity model implies the principle of “delayed
differentiation”, which already has become a common practice
in industry [25].

However, by Eqn.(29), our model suggests that it is not suffi-
cient by looking at the number of variants and the position where
they are deployed according to the “delayed differentiation” prin-
ciple. The evaluation of the impact of product variety on man-
ufacturing complexity should also take into account the process
flexibility and commonality built in the system. For instance, if
all the variants from the upstream could be treated by the same
flexible tools, shared fixture, and common assembly procedures
in the downstream, variants can be introduced in the upstream
without increasing system complexity. In this case, all the A-
matrices for transfer complexity become column vectors with all
ones in the column, indicating common process requirements for
the feature variants in the product family. As a result, the transfer
complexity vanishes.

Since different configurations have profound impact on the
performance of the system [26], selecting an assembly system
configuration other than a pure serial line may help reduce com-
plexity. For instance, using parallel workstations at the later
stages of a mixed-model assembly process reduces the number
of choices on these stations if we can wisely route the variants at
the joint of the ramified paths, see Fig.10. However, balancing
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Figure 10. Possible configurations for mixed-model assembly systems.
M;’s are machines in the system [27].

Ci Gi
\_/ \__/ \/ \__
(a) (b)

Figure 11. Differences in transfer complexity values for different assem-
bly sequences: (a) Task i precedes j, which results in C;;; (b) Task j
precedes i, which results in Cj;, while C;; and Cj; are not equal.

these types of manufacturing systems will be a challenge since
the system configuration is not serial [27]. A novel method for
task-machine assignment and system balancing needs to be de-
veloped to minimize complexity while maintaining manufactur-
ing system efficiency.

4.3 Assembly Sequence Planning to Minimize Com-
plexity

Assembly sequence planning is an important task in assembly

system design. Since the assembly sequence determines the di-

rections in which complexity flows, see Fig.11, proper assembly

sequence planning can reduce complexity.

Generally, suppose we have a product with n assembly tasks,
and the tasks are to be carried out sequentially in an order subject
to precedence constraints. By applying the complexity model,
we assume that the transfer complexity can be found between
every two assembly tasks. Since only one of the two transfer
complexity values in Fig.11 is effective (because only the up-
stream task/station has influence on the downstream ones) for
one particular assembly sequence, an optimization problem can
be formulated to minimize the system complexity by finding an
optimal assembly sequence while satisfying the precedence con-
straints.

5 CONCLUSION AND FUTURE WORK

The paper proposes a measure of complexity based on the
choices that the station operator has to make at the station level.
The measure incorporates both product mix and process infor-
mation. Moreover, models are developed for the propagation of
complexity at the system level. The significance of this research
includes: (i) mathematical models that reveal the mechanisms
that contribute to complexity and its propagation in multi-stage
mixed model assembly systems; (ii) understanding of the impact
of manufacturing system complexity on performance; and (iii)
guidelines for managing complexity in designing mixed-model

assembly systems to optimize performance. Our future work will
focus on the validation and applications of such model in assem-
bly systems design and operations.
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