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ABSTRACT 

A new real-time obstacle avoidance approach for mobile robots has been developed and 
implemented. This approach permits the detection of unknown obstacles simultaneously 
with the steering of the mobile robot to avoid collisions and advancing toward the target. 
The novelty of this approach, entitled the Virtual Force Field, lies in the integration of two 
known concepts: Certainty Grids for obstacle representation, and Potential Fields for 
navigation. This combination is especially suitable for the accommodation of inaccurate sen- 
sor data (such as produced by ultrasonic sensors) as well as for sensor W i n ,  and enables 
continuous motion of the robot without stopping in front of obstacles. 

Experimental results from a mobile robot running at a maximum speed of 0.78 m/sec 
demonstrate the power of the proposed algorithm. 

1. Introduction 

One widely used method for obstacle avoidance is based on 
edge detection. In this method, the algorithm determines the 
position of an obstacle’s vertical edges and consequently at- 
tempts to steer the robot around those edges. This method was 
used in our own previous research (Borenstein, 1987; Borenstein 
and Koren, 1988), as well as in several other research projects, 
such as (Crowley, 1984; Weisbin et al. 1986). 

A drawback of this method is its sensitivity to sensor accuracy. 
Unfortunately, ultrasonic sensors, which are commonly used in 
mobile robot applications, have many shortcomings that ag- 
gravate this drawback 

1. Poor directionality limits the accuracy in determining the spa- 
tial position of an edge to 10-50 cm, depending on the distance 
to the obstacle. 

2. Frequent misreadings, caused by either ultrasonic noise from 
external sources or stray reflections from neighboring sensors, 
cannot always be filtered out. 

3. Specular reflections occur when a smooth surface of an un- 
favorably oriented obstacle reflects incoming ultra-sound 
waves away from the sensor. In this case, the obstacle either is 
not detected or is “seen” as much smaller than it is in reality 
(since only part of the surface is detected). 

Another disadvantage with an obstacle avoidance approach 
based on edge detection is the need for the robot to stop in front 
of an obstacle in order to obtain more accurate measurements. 

2. The Certainty Grid for Obstacle Representation 

The representation of obstacle in a grid model using certainty 
levels has been suggested by Elfes (1985), Moravec and Elfes 
(1989, and Moravec (1986). This representation is especially 
suited to the unified representation of data from different sen- 
sors (ultrasonic, vision, proximity, etc.) as well as the accom- 
modation of inaccurate sensor data (such as measurements from 
ultrasonic sensors). 

With the certainty grid world model, the robot’s work area is 
represented by a two-dimensional array of square elements 
(denoted as cells). Each cell (ij) contains a certainty value C(ij) 
that indicates the measure of confidence that an obstacle exists 
within the cell area. The greater C(i,j), the greater the level of 
confidence that an obstacle occupies.the cell. 

With our approach, ultrasonic sensors are continuously 
sampled while the robot is moving. If an obstacle produces an 
echo (within the predefined maximum range limit of 2 m), the 
corresponding cell content C(ij) is incremented. A solid, motion- 
less obstacle will eventually cause a high count in its correspond- 
ing cells. Misreadings, on the other hand, occur randomly, and 
will not cause high counts in any particular cell. Thus, this 
method yields a more reliable obstacle representation in spite of 
the ultrasonic sensors’ inaccuracies. 
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3. The Virtual Force Field (VFF) Algorithm 

The idea of obstacles conceptually exerting forces onto a 
mobile robot has been suggested by Khatib (1985). Krogh (1984) 
uses a similar concept which takes into consideration the robot’s 
velocity in the vicinity of obstacles, and Thorpe (1985) uses the 
Potential Fields Method for off-line path planning. Krogh and 
Thorpe (1986) suggest a combined method for global and local 
path planning that uses Krogh’s Generalized Potential Field 
(GPF) approach. 

These methods, however, assume a known and prescribed 
world model of the obstacles. Furthermore, none of the above 
methods has been implemented on a mobile robot that uses real 
sensory data. The closest project to ours is that of Brooks (1986; 
1987), who uses a Force Field method in an experimental robot 
equipped with a ring of 12 ultrasonic sensors. Brooks’s im- 
plementation treats each ultrasonic range reading as a repulsive 
force vector. If the magnitude of the sum of the repulsive forces 
exceeds a certain threshold, the robot stops, turns into the direc- 
tion of the resultant force vector, and moves on. 

The combination of the Potential Field method with a Cer- 
tainty Grid produces a powerful and robust control scheme for 
mobile robots. This approach has been denoted as the Virtual 
Force Field (VFF) method. 

We have implemented the VFF method on our mobile robot, 
CARMEL: When CARMEL moves around, range readings are 
taken and projected into the Certainty Grid, as explained above. 
Simultaneously, the VFF algorithm scans a small square window 
of the grid. The size of the window is 33x33 cells (i.e., 
3.30x3.30m) and its location is such that the robot is always at its 
center. 

Each occupied cell inside the window applies a repulsive force 
to the robot, “pushing“ the robot away from the cell. The mag- 
nitude of this force is proportional to the cell contents, C(i,j), and 
is inversely proportional to the square of the distance between 
the cell and the robot: 

where 
= Force constant (repelling) 

d ( i j ) = Distance between cell (ij) and the robot 
c ( i j ) = Certainty level of cell (ij) 
xo yo 
xi y j  

= Robot’s present coordinates 
= Coordinates of cell (ij) 

Notice that in Eq. 1 the force constant is divided by d2. By this 
method, occupied cells exert strong repulsive forces when they 
are in the immediate vicinity of the robot, and weak forces when 
they are further away. 

The resultant repulsive force, Er, is the vectorial sum of the 
individual forces from all cells: 

At any time during the motion, a constant-magnitude attract- 
ing force, Et, pulls the robot toward the target. Et is generated by 
the target point T, whose coordinates are known to the robot. 
The target-attracting force Et is given by 

( 3 )  

where 
Fct 
d (t) 
xt  y, = Target coordinates 

Notice that Et is independent of the absolute distance to the tar- 
get. 

= Force constant (attraction to the target) 
= Distance between the target and the robot 

The vectorial sum of all forces, repulsive from occupied cells 
and attractive from the target position, produces a resultant force 
vector 11: 

The direction of g S = (in degrees), is used as the 
reference for the robot’s steering-rate command R 

fl = KS[6 ( - )  61 (5) 

where 
K, 
8 

(-) is a specially defined operator for two operands, a and p (in 
degrees), and is used in the form S = a (-) p . The result, 6 (in 
degrees), is the shortest rotational difference between a and p. 
Therefore, S is always in the range -180’ < 6 < 180’. 

= Proportional constant for steering (in sec-’) 
= Current direction of travel (in degrees) 

A typical obstacle map in Certainty Grid representation shows 
obstacle-boundaries as clusters of cells with high certainty 
values. Misreadings, on the other hand, occur at random and 
therefore produce mostly isolated cells with low certainty values. 
Summation of repulsive forces from occupied cells (Eq. 2) makes 
the robot highly responsive to clusters of filled cells, while almost 
completely ignoring isolated cells. 

Our VFF algorithm has several advantages over edge- 
detection methods: 

1. In-edge detection methods, misreadings or inaccurate range 
measurements may be misinterpreted as part of an obstacle, 
thereby gravely distorting the perceived shape of the obstacle. 
The sharply defined contour required by these methods can- 
not rectify the blurry and inaccurate information provided by 
the sensors. In our method, on the other hand, misreadings 
gradually deteriorate. The VFF concept does not utilize sharp 
contours in the world model (since most sensors do not 
produce adequate data for sharp contours), but responds to 
clusters of high likelihood for the existence of an obstacle. 
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2. Our force-field method does not require the robot to stop for 
data acquisition and evaluation, or for comer negotiation (as 
is the case in Crowley, 1984; Weisbin et al., 1986, Brooks, 
1986; Borenstein and Koren, 1988). Ideally, our method would 
allow the robot to negotiate all obstacles while it travels at its 
maximum speed. 

Updating the grid-map with sensor information and using the 
grid-map for navigation are two completely independent tadrs 
that may be performed asynchronously, each at its optimal 
pace. The edge-detection method, in contrast, always requires 
the following activities to be performed in sequence: detect an 
obstacle, stop the robot, measure the obstacle (find its edges), 
recalculate the path, and resume the robot's motion. 

The grid representation for mapping obstacles lends itself 
easily to the integration of data from other sensors (such as vi- 
sion, touch, and proximity), in addition to data from previous 
runs or from preprogrammed obstacles (such as walls). 
Indeed, this navigation algorithm is altogether indifferent to 
the source of the map data, since different levels of confidence 
are expressed numerically. 

Fig. 1 shows a run of the robot with actual ultrasonic data, ob- 
tained in real-time during the robot's motion. The robot ran at a 
maximum speed of 0.78 &sec and achieved an average speed of 
0.53 dsec.  The maximal range for the sensors was set to 2 m, 
which is why only part of the nghtmost wall is shown, whereas the 
rear wall and most of the leftmost wall remained undetected. 
Each dot in Fig. 1 represents one cell with a Certainty Value 
(CV) unequal to zero. C V s  are color-coded on the computer 
screen, but this can not be reproduced here. At least two mis- 
readings can be identified in Fig. 1, which have been encircled for 
emphasis. 
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Fia.l: 
Robot run with actual ultrasonic data obtained in real-time during the 
robot's motion. Maximum speed = 0.78 m/sec and average speed = 
0.53 dsec. 

4. Conclusions 

A comprehensive obstacle avoidance approach for fast- 
running mobile robots, denoted as the VFF method, has been 
developed and tested on our experimental mobile robot CAR- 
MEL The VFF method is based on the following principles: 

1. A Certainty Grid for representation of (inaccurate) sensory 
data about obstacles provides a robust real-time world model. 

2. A field of virtual attractive and repulsive forces determines 
the direction and speed of the mobile robot. 

3. The combination of 1. and 2. results in the characteristic t=- 
havior of the robot: The robot responds to clusters of high- 
likelihoad for the existma of an obstacle, while ignoring 
single (possibly erroneous) data points. 
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Introduction 

An intelligent software not only uses 
logical experience but also overcomes the 
weaknesses in the hardware/software inter- 
face. It knows how the hardware will fail 
and prepares to assume the most efficient 
control. This paper covers the software 
analysis methodology to minimize the down- 
time from software as well as the vulnerable 
hardware. 

The downtime can result from the soft- 
ware's inherent design. If one looks at the 
costs of downtime from software, it is in 
multi proportion to downtime costs due to 
hardware. It is understandable that the 
invisible nature of software makes it diff- 
icult to troubleshoot, but the costs today 
are dangerously out of control. Some rea- 
sons are: incomplete specifications, absence 
of design for maintainability, and poorly 
structured programming. The most ignored 
element in this list is design for maintain- 
ability. 

Software Maintainability - 
What is it ? 

Software maintainability is the charac- 
teristic of software design and can be ex- 
pressed as the probability that the down- 
time caused by software error shall be no 
more than the specified time when maintena- 
nce action is performed in accordance with 
the prescribed procedures and resources. 
Some try to include the ability to modify 
the software as part of maintainability but 
then they are really referring to "Adopta- 
bility". Maintainability is generally not 
quantified because the above definition 
contains several qualitative factors. It 
assumes the resources such as trouble- 
shooting procedures are standardized and 
that the trained manpower is available all 
the time. Some parameters related to main- 
tainability such as maximum downtime, and 
software recovery time, and inherent avail- 
ability (percent uptime) can be specified. 

Reducing Downtime Inherently 
in Design 

The problem of measuring maintaina- 
bility is larger. The software error once 
removed, is not expected to reappear except 
from a different cause. And if the soft- 
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ware engineer knew about the error in advance, 
he/she will correct it at the outset. In 
short, the error removal time is unpredict- 
able. The software engineer's answer to main- 
tainability then isto use proactive analyses 
in predicting the possible type of errors and 
design the software to locate and fix them 
fast. Typically, the errors and their pro- 
portions could be the following as reported 
by Chenoweth and Schulmeyer (IEEE COMPSAC 86 
Proceedings : 

Logic errors 21.29 
Input/Output errors 14.74 
Data handling errors 14.49 

8.34 Compu ta t ional errors 
7.83 Preset database errors 
7 . 7 0  User interface errors 
6.25 Documentation errors 
5.62 Routine to routine 

interface errors 

percent 
percent 
percent 
percent 
percent 
percent 
percent 
percent 

In this list the logic errors are 21.29 
percent but actually they are much higher. 
These errors are hidden in the other catago- 
ries and may account for as much as 60 per- 
cent. Not included in this list are environ- 
mental failures from hardware causes and 
human errors. A maintainable software is 
therefore designed to repair fast inspite of 
logic and other forms of errors. Let's look 
at some design features required that should 
reduce downtime should an error occur. 

Modular Design: will isolate the error to a 
module level and help reduce downtime from 
going through the entire software. 

Structured Program: will offer clues to 
errors faster than unstructured program. The 
top-down structure may even speed up the 
process of fault isolation. 

Testable Desisn: will be able to test impor- 
tant paths which may be not observable other- 
wise. 

Fault Tolerant Design: will often incorporate 
triple modular redundancy. 
downtime conceptually and the software will 
w o r k  as long as at least one module works. 
The designs could include similar features 
such as fault masking and fault avoidance. 

It will avoid 



Self Testing Design: can perform internal 
checks. IBM 3081 mainframe has a maintenance 
processor inside the host computer to monitor 
software and the hardware parameters. 

Unambiguous System Requirements: will incorp- 
orate specifications based on a thorough 
analysis of predicted downtimes. It will in- 
clude limits on downtime, and will incorporate 
most of the features mentioned above. System 
Requirements Definition is the first place 
and the most important one where maintain- 
ability effort is most productive. 

Above design features form the core 
requirements to reduce downtime from logic 
errors. Other requirements may be added. A 
similar listing of requirements should be 
developed to quickly recover from Coding 
errors. For example, high level languages 
and reusable software are used to avoid 01 
prevent coding errors (best way to recover 
from an error is not to have one). Require- 
ments such as signature analysis can be used 
to isolate certain coding errors. Similarly, 
error detection codes can be used to quickly 
identify input/output errors, and inclusion 
of the "retry" operation can overcome erro- 
neus outputs due to voltage transients. 

Using Analysis to Overcome 
System Vulnerability 

This method makes use of systematic 
analysis such as Failure Modes, Effects and 
Criticality Analysis (PMECA) or equivalent 
methodology. The purpose is to predict miss- 
ing requirements that could help in reducing 
the downtime. For example: Let us suppose 
that a software activates a red light bulb to 
indicate a dangerous condition. It is likely 
that the light bulb itself could burn out. 
If the software is not coded to detect the 
bulb failure, then there can be an enormous 
downtime or even a permanent damage t o  the 
system. This then becomes the missing re- 
quirement in the specification. 
FMECA. sometimes called FMEA, can overcome 
many similar deficiencies. 
below will illustrate the use of this 
technique. 

The software 

The case history 

The procedure 

Hardware is inherently vulnerable to 
component failures. An intelligent software 
should be designed to anticipate such fail- 
ures and take corrective actions. But the 
most difficult task is(for the software 
designerlto predict failures of the hardware. 
Fortunately, there are tools for predicting 
malfunctions. One such tool is Software 
Failure Mode, Effects, and Analysis (SFMEA). 
Below is the description of this technique. 

The analysis is done as soon as the 
first draft of the System Requirements Speci- 
fication is complete. BO coding should be 
done unless this analysis is complete because 
many missing requirements are likely to be 
revealed during this analysis. This is a 
systematic analysis of the software flow 
logic. It identifies what could go wrong 
during each software task and what kind of 
design action should be taken to build the 

intelligence in the software to avoid down- 
time. The steps are (a) construct the prog- 
ram instruction flow chart or pseudo code 
from the System Requirements Definition. 
(b) document maintainability requirements, 
and (c) use SFMEA table to identify new 
requirements to overcome hardware vulner- 
Ability. 

Constructing the Program Instruction Plow 
Chart 

Figure 1 shows an overhead conveyor 
system for an automated material handling 
process. The system description is as 
follows: The plastic bucket comes in empty on 
the conveyor. Each bucket lands on a sensor 
which activates the drum to tilt. The bucket 
waits for In' seconds during which the food 
product is filled in the bucket. The bucket 
then goes to a saale which controls the 
product inventory. A bar coder then codes 
the bucket for its destination to a designa- 
ted production line. Finally, the bucket 
passes through a dispatcher device which 
reads the bar code and routes the bucket. 
The entire process is controlled by the soft- 
ware. The objective is to prevent the pro- 
cess from stopping and prevent food from 
spilling over the buckets. 

I 
Figure 1. The Process Description 

Documenting Maintainability Requirements 

Unless the maintainability parameters 
are included in the System Requirements Speci- 
fications, they are likely to be ignored. In 
this case, some requirements area 

.The software shall manage the process 
such that no product shall spill from 
too much product in the bucket or 
iron a malfunction of the syater (All 
spills require the process to shut 
down). 

.The joint availability of the soft- 
ware/hardware system shall be at 
least 95% (Downtime no more than 5 9 ) .  
The software shall exercise intelli- 
gent controls to prevent downtime 
from hardware malfunctions. 



.The s o f t w a r e  s h a l l  p e r f o r m  s e l f -  
t e s t s  t o  a s s u r e  r e l i a b i l i t y  each  
t i m e  t h e  p r o c e s s  s t a r t s  a f t e r  a 
shutdown. 

.The s o f t w a r e  s h a l l  i s o l a t e  a l l  c r i t i -  
c a l  and ma jo r  f a u l t s  t o  a v o i d  t h e  
t i m e  r e q u i r e d  t o  d i a g n o s e  them. Such 
f a u l t s  s h a l l  b e  i d e n t i f i e d  i n  t h e  
S o f t w a r e  R a i l u r e  Mode and E f f e c t s  
A n a l y s i s ,  as  c a t a g o r y  I and I1 i t e m s .  

S o f t w a r e  F a i l u r e  Mode and E f f e c t s  
A n a l y s i s  (SFMEA) 

T h i s  is a s y s t e m a t i c  a n a l y s i s  t o  uncove r  
weaknesses  and m i s s i n g  r e q u i r e m e n t s  i n  t h e  
s o f t w a r e  s p e c i f i c a t i o n s .  Each t a s k  i n  t h e  
s o f t w a r e  i s  a n a l y z e d  f o r  what c a n  go wrong 
w h i l e  t h e  t a s k  i s  b e i n g  pe r fo rmed .  The 
c r i t i c a l  q u e s t i o n s  a r e :  

.What c a n  go wrong w i t h  t h e  ha rdware?  

. I s  s o f t w a r e  c a p a b l e  o f  s w i t c h i n g  t o  
a n  a l t e r n a t e  mode o r  a p p r o p r i a t e  
c o r r e c t i v e  a c t i o n  t o  p r e v e n t  down- 
t i m e ?  

I f  t h e  answer t o  t h e  l a t e r  i s  ' N o ' ,  t h e  
weakness  i n  t h e  s o f t w a r e  i n t e l l i g e n c e  i s  
o b v i o u s .  I n  o t h e r  words ,  some r e q u i r e m e n t  . 
i n  t h e  s o f t w a r e  s h o u l d  have been t h e r e ,  b u t  
i t  i s  m i s s i n g .  

F i g u r e  2 shows t h e  f l o w c h a r t .  I t  shows 
a l l  t h e  s o f t w a r e  t a s k s  s e q u e n t i a l l y .  Each 
t a s k  i s  a s s i g n e d  a number f o r  t r a c e a b i l i t y .  

PROGM lMSlRUCTlON FLOWCHART 
(BULK FOOD TWNSPORTATION) 

/ 101 1 BUCKET READS SENSOR P O S I T I O N  A N D  CORES TO A STOP 

I [a A C T I V I T E  DRUM TO DROP BULK P R O W C T  

R E I D  LCALE P O S I T I O N  AND ' T O P  AT SCALE 

BUCKEl  GETS BAR CODE 

BUCKET READS D I S P A T C H  I N F 9 R W T I O N  

BUCKE' MOVES TO D E S l G N A T l 3  PRODUCTION L I N E  

F i g u r e  3 shows a p o r t i o n  of SFMEA w i t h  
a n  e x p l a n a t i o n  below. 

Column 1 shows each  s o f t w a r e  t a s k .  

Column 2 shows s y s t e m  v u l n e r a b i l i t y  ( f a i l u r e  
mode) i n c l u d i n g  t h e  v u l n e r a b i l i t y  o f  
t h e  s o f t w a r e  due t o  c o d i n g  e r r o r s ,  
i n p u t / o u t p u t  e r r o r s ,  and t h e  p r o g -  
ram changes .  

Column 3 c o n t a i n s  t h e  e f f e c t s  o f  v u l n e r -  
a b i l i t y  on t h e  s y s t e m .  

Column 4 shows how c r i t i c a l  t h e  v a l u e  of 
downtime i s .  I n  t h i s  t a b l e ,  c a t a -  
go ry  I s t a n d s  f o r  un ' accep tab le  
downtime, 11 f o r  ma jo r  downtime, 
I11 f o r  minor  downtime, and I V  f o r  
a c c e p t a b l e  downtime. 

Column 5 c o n t a i n s  t h e  recommendat ion a f t e r  a 
c a r e f u l  r e v i e w  o f  t h e  d e s i g n .  I t  
i d e n t i f i e s  what  new t a s k  t h e  s o f t -  
ware w i l l  p e r f o r m  t o  a v o i d  sys t em 
downtime. A change i n  t h e  ha rdware  
d e s i g n  may a l s o  be r e q u i r e d .  To 
p r e v e n t  i n h e r e n t  downtime from s o f t -  
w a r e , o h e  s h o u l d  q u e s t i o n  t h e  p o s s i -  
b i l i t y  of i n p u t / o u t p u t  e r r o r s ,  d a t a  
h a n d l i n g  e r r o r s ,  and u s e r  i n t e r f a c e  
e r r o r s .  S o f t w a r e  d e s i g n  may need 
changes t o  a v o i d  downtime from t h e s e  
e r r o r s .  

Examples o f  Deve lop inq  
New Requirements  

L e t ' s  l o o k  a t  t a s k  1 0 1 .  The b u c k e t  
s t a n d s  on t h e  s e n s o r  and a s o f t w a r e  command 
i s  e x p e c t e d  t o  h a l t  t h e  conveyor .  The f a i l -  
u r e  mode ( v u l n e r a b i l i t y )  i s  t h a t  t h e  s o f t -  
ware g i v e s  command t o  s t o p ,  b u t  t h e  wrong 
b i t  w inds  u p  i n  t h e  memory. A s  a r e s u l t  t h e  
conveyor  w i l l  n o t  s t o p  and t h e  b u c k e t s  may 
p i l e  up on each  o t h e r  f u r t h e r  i n  t h e  p r o -  
c e s s .  Column 4 shows t h a t  t h e  c r i t i c a l i t y  
i s  n o t  v e r y  h i g h  b e a c u s e  t h e  b u c k e t s  a r e  
empty b u t  t h e  downtime c o u l d  be s u b s t a n t i a l .  
Column 5 shows t h a t  t h e  s o f t w a r e  needs  t o  
check t h a t  t h e  b u c k e t  i s  i n d e e d  f u l l  a f t e r  
it l e f t  t h e  s e n s o r  and c o n s i d e r  t h i s  f e e d -  
back b e f o r e  more b u c k e t s  a r e  a l l o w e d  t o  go. 
To minimize downtime,  t h e  s o f t w a r e  must a l s o  
i s o l a t e  t h i s  f a u l t  and i s s u e  a p r i n t  s t a t e -  
ment t o  ma in tenance  p e r s o n n e l .  A more i n -  
t e l l i g e n t  s o f t w a r e  w i l l  a u t o m a t i c a l l y  s w i t c h  
o v e r  t o  a r e d u n d a n t  s e n s o r  and a s s u r e  q u i c k -  
e s t  r e p a i r  of t h e  f a i l e d  s e n s o r .  T h i s  w i l l  
c a l l  f o r  some a d d i t i o n a l  ha rdware  a l s o .  

L e t ' s  l o o k  a t  one more t a s k :  t a s k  201. 
In  t h i s  t a s k  t h e  b u c k e t  i s  e x p e c t e d  t o  w a i t  
I n '  s e c o n d s .  The n e x t  column q u e s t i o n s  
"What Can G o  Wrong", w h i l e  s o f t w a r e  i s  p e r -  
fo rming  t h i s  t a s k  ( f a i l u r e  mode) .  One f a i -  
l u r e  mode i s  t h a t  t h e  t i m e r  may m a l f u n c t i o n  
and t h e  s o f t w a r e  does  n o t  know i t .  The 
" e f f e c t "  i s  t h a t  t h e  p r o d u c t  w i l l  o v e r f i l l  
t h e  b u c k e t  and s p i l l .  T h i s  becomes a p o t e n -  
t i a l  h e a l t h  h a z a r d  b e c a u s e  someone can  p u t  
t h e  c o n t a m i n a t e d  p r o d u c t  back i n t o  t h e  
b u c k e t  . 

F i g u r e  2 .  Program I n s t r u c t i o n  Flow 
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Figure 3. SFMEA Example 

The criticality rank is I. The recom- 
mendation column now introduces a 'newu 
requirement" that the software should con- 
stantly check the timer performance. Such 
requirements are sooner or later introduced 
out of necessity, but it i s  cheaper to put 
this missing requirement in early design. By 
the tine this analysis was complete, more 
than 200 software requirements were added to 
the specification. 

Conclusion 

Software maintainability can use a lot 
of ideas from hardware maintainability. One 
should note that an analysis like this lets 
the software engineer ask etructured ques- 
tions on vulnerability but identifying addi- 
tional requirements depends on the indivi- . 
dual. It is, therefore, possible to still 
m i s s  many design requirements. A critical 
software design should include some more 
proactive analyses such as fault tree ana- 
lysis and sneak circuit analysis. 
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