
High-speed Obstacle Avoidance
for Mobile Robots

by
J. Borenstein and Y. Koren

Department of Mechanical Engineering and Applied Mechanics
The University of Michigan, Ann Arbor

ABSTRACT

A new real-time obstacle avoidance approach for mobile robots has been developed and
implemented. This approach permits the detection of unknown obstacles simultaneously
with the steering of the mobile robot to avoid collisions and advancing toward the target.
The novelty of this approach, entitled the Virtual Force Field, lies in the integration of two
known concepts: Certainty Grids for obstacle representation, and Potential Fields for
navigation. This combination is especially suitable for the accommodation of inaccurate sen-
sor data (such as produced by ultrasonic sensors) as well as for sensor W i n , and enables
continuous motion of the robot without stopping in front of obstacles.

Experimental results from a mobile robot running at a maximum speed of 0.78 m/sec
demonstrate the power of the proposed algorithm.

1. Introduction

One widely used method for obstacle avoidance is based on
edge detection. In this method, the algorithm determines the
position of an obstacle’s vertical edges and consequently at-
tempts to steer the robot around those edges. This method was
used in our own previous research (Borenstein, 1987; Borenstein
and Koren, 1988), as well as in several other research projects,
such as (Crowley, 1984; Weisbin et al. 1986).

A drawback of this method is its sensitivity to sensor accuracy.
Unfortunately, ultrasonic sensors, which are commonly used in
mobile robot applications, have many shortcomings that ag-
gravate this drawback

1. Poor directionality limits the accuracy in determining the spa-
tial position of an edge to 10-50 cm, depending on the distance
to the obstacle.

2. Frequent misreadings, caused by either ultrasonic noise from
external sources or stray reflections from neighboring sensors,
cannot always be filtered out.

3. Specular reflections occur when a smooth surface of an un-
favorably oriented obstacle reflects incoming ultra-sound
waves away from the sensor. In this case, the obstacle either is
not detected or is “seen” as much smaller than it is in reality
(since only part of the surface is detected).

Another disadvantage with an obstacle avoidance approach
based on edge detection is the need for the robot to stop in front
of an obstacle in order to obtain more accurate measurements.

2. The Certainty Grid for Obstacle Representation

The representation of obstacle in a grid model using certainty
levels has been suggested by Elfes (1985), Moravec and Elfes
(1989, and Moravec (1986). This representation is especially
suited to the unified representation of data from different sen-
sors (ultrasonic, vision, proximity, etc.) as well as the accom-
modation of inaccurate sensor data (such as measurements from
ultrasonic sensors).

With the certainty grid world model, the robot’s work area is
represented by a two-dimensional array of square elements
(denoted as cells). Each cell (ij) contains a certainty value C(ij)
that indicates the measure of confidence that an obstacle exists
within the cell area. The greater C(i,j), the greater the level of
confidence that an obstacle occupies.the cell.

With our approach, ultrasonic sensors are continuously
sampled while the robot is moving. If an obstacle produces an
echo (within the predefined maximum range limit of 2 m), the
corresponding cell content C(ij) is incremented. A solid, motion-
less obstacle will eventually cause a high count in its correspond-
ing cells. Misreadings, on the other hand, occur randomly, and
will not cause high counts in any particular cell. Thus, this
method yields a more reliable obstacle representation in spite of
the ultrasonic sensors’ inaccuracies.

This work was sponsored (i n p a r t) by t h e Department of Energy Grant DE-FG02-86NE37969

@-8loF-2312-9/89/0000/0382$01.00 0 1989 IEEE 382

3. The Virtual Force Field (VFF) Algorithm

The idea of obstacles conceptually exerting forces onto a
mobile robot has been suggested by Khatib (1985). Krogh (1984)
uses a similar concept which takes into consideration the robot’s
velocity in the vicinity of obstacles, and Thorpe (1985) uses the
Potential Fields Method for off-line path planning. Krogh and
Thorpe (1986) suggest a combined method for global and local
path planning that uses Krogh’s Generalized Potential Field
(GPF) approach.

These methods, however, assume a known and prescribed
world model of the obstacles. Furthermore, none of the above
methods has been implemented on a mobile robot that uses real
sensory data. The closest project to ours is that of Brooks (1986;
1987), who uses a Force Field method in an experimental robot
equipped with a ring of 12 ultrasonic sensors. Brooks’s im-
plementation treats each ultrasonic range reading as a repulsive
force vector. If the magnitude of the sum of the repulsive forces
exceeds a certain threshold, the robot stops, turns into the direc-
tion of the resultant force vector, and moves on.

The combination of the Potential Field method with a Cer-
tainty Grid produces a powerful and robust control scheme for
mobile robots. This approach has been denoted as the Virtual
Force Field (VFF) method.

We have implemented the VFF method on our mobile robot,
CARMEL: When CARMEL moves around, range readings are
taken and projected into the Certainty Grid, as explained above.
Simultaneously, the VFF algorithm scans a small square window
of the grid. The size of the window is 33x33 cells (i.e.,
3.30x3.30m) and its location is such that the robot is always at its
center.

Each occupied cell inside the window applies a repulsive force
to the robot, “pushing“ the robot away from the cell. The mag-
nitude of this force is proportional to the cell contents, C(i,j), and
is inversely proportional to the square of the distance between
the cell and the robot:

where
= Force constant (repelling)

d (i j) = Distance between cell (ij) and the robot
c (i j) = Certainty level of cell (ij)
xo yo
xi y j

= Robot’s present coordinates
= Coordinates of cell (ij)

Notice that in Eq. 1 the force constant is divided by d2. By this
method, occupied cells exert strong repulsive forces when they
are in the immediate vicinity of the robot, and weak forces when
they are further away.

The resultant repulsive force, Er, is the vectorial sum of the
individual forces from all cells:

At any time during the motion, a constant-magnitude attract-
ing force, Et, pulls the robot toward the target. Et is generated by
the target point T, whose coordinates are known to the robot.
The target-attracting force Et is given by

(3)

where
Fct
d (t)
xt y, = Target coordinates

Notice that Et is independent of the absolute distance to the tar-
get.

= Force constant (attraction to the target)
= Distance between the target and the robot

The vectorial sum of all forces, repulsive from occupied cells
and attractive from the target position, produces a resultant force
vector 11:

The direction of g S = (in degrees), is used as the
reference for the robot’s steering-rate command R

fl = KS[6 (-) 61 (5)

where
K,
8

(-) is a specially defined operator for two operands, a and p (in
degrees), and is used in the form S = a (-) p . The result, 6 (in
degrees), is the shortest rotational difference between a and p.
Therefore, S is always in the range -180’ < 6 < 180’.

= Proportional constant for steering (in sec-’)
= Current direction of travel (in degrees)

A typical obstacle map in Certainty Grid representation shows
obstacle-boundaries as clusters of cells with high certainty
values. Misreadings, on the other hand, occur at random and
therefore produce mostly isolated cells with low certainty values.
Summation of repulsive forces from occupied cells (Eq. 2) makes
the robot highly responsive to clusters of filled cells, while almost
completely ignoring isolated cells.

Our VFF algorithm has several advantages over edge-
detection methods:

1. In-edge detection methods, misreadings or inaccurate range
measurements may be misinterpreted as part of an obstacle,
thereby gravely distorting the perceived shape of the obstacle.
The sharply defined contour required by these methods can-
not rectify the blurry and inaccurate information provided by
the sensors. In our method, on the other hand, misreadings
gradually deteriorate. The VFF concept does not utilize sharp
contours in the world model (since most sensors do not
produce adequate data for sharp contours), but responds to
clusters of high likelihood for the existence of an obstacle.

383

2. Our force-field method does not require the robot to stop for
data acquisition and evaluation, or for comer negotiation (as
is the case in Crowley, 1984; Weisbin et al., 1986, Brooks,
1986; Borenstein and Koren, 1988). Ideally, our method would
allow the robot to negotiate all obstacles while it travels at its
maximum speed.

Updating the grid-map with sensor information and using the
grid-map for navigation are two completely independent tadrs
that may be performed asynchronously, each at its optimal
pace. The edge-detection method, in contrast, always requires
the following activities to be performed in sequence: detect an
obstacle, stop the robot, measure the obstacle (find its edges),
recalculate the path, and resume the robot's motion.

The grid representation for mapping obstacles lends itself
easily to the integration of data from other sensors (such as vi-
sion, touch, and proximity), in addition to data from previous
runs or from preprogrammed obstacles (such as walls).
Indeed, this navigation algorithm is altogether indifferent to
the source of the map data, since different levels of confidence
are expressed numerically.

Fig. 1 shows a run of the robot with actual ultrasonic data, ob-
tained in real-time during the robot's motion. The robot ran at a
maximum speed of 0.78 &sec and achieved an average speed of
0.53 dsec. The maximal range for the sensors was set to 2 m,
which is why only part of the nghtmost wall is shown, whereas the
rear wall and most of the leftmost wall remained undetected.
Each dot in Fig. 1 represents one cell with a Certainty Value
(CV) unequal to zero. C V s are color-coded on the computer
screen, but this can not be reproduced here. At least two mis-
readings can be identified in Fig. 1, which have been encircled for
emphasis.

Right wall
as 'seen' :

-.... by sensor .:

..........
...

. f--*$., ~ ~

. I.

3
.

... 2 i;

I'

3 ...

..
[n]

Fia.l:
Robot run with actual ultrasonic data obtained in real-time during the
robot's motion. Maximum speed = 0.78 m/sec and average speed =
0.53 dsec.

4. Conclusions

A comprehensive obstacle avoidance approach for fast-
running mobile robots, denoted as the VFF method, has been
developed and tested on our experimental mobile robot CAR-
MEL The VFF method is based on the following principles:

1. A Certainty Grid for representation of (inaccurate) sensory
data about obstacles provides a robust real-time world model.

2. A field of virtual attractive and repulsive forces determines
the direction and speed of the mobile robot.

3. The combination of 1. and 2. results in the characteristic t=-
havior of the robot: The robot responds to clusters of high-
likelihoad for the existma of an obstacle, while ignoring
single (possibly erroneous) data points.

5. References
Borenstein, J., 1987, "The Nursing Robot System." Ph.D. the^ is, Technion,
Haifa, Israel.

Borenstein. J. and Koren, Y., 1988, 'Obstade Avoidance With Ultrasonic
se~rs."IEEEJo u m l of Robotics and A utomatiog,
Vol. RA-4, No. 2

Brmlrs, R A., 1986, 'A Robust Layered Control System for a Mobile Robot."
F.FR Joum a1 of Robotics and Automa tion. Vol. RA-2, No. 1. pp. 14-23.

Brooks, R A. and Connell, J. H., 1987, .AsynchKMous Dktri%uted Control
System for a Mobile Robot", Procmhep of the SPIE. Vol. 727, Mobile
Robots (1986), pp. 77-84.

Crowley. J. L, 1984, "Navigation for an Intelligent Mobile Robot.' Carneeie-
Mellon Un iversitv. The Robotl 'cs Institute. Technical Report, August.

Elfer, A, 1985, 'A Sonar-Based Mapping and Navigation System'
Mellon U niversitv. The Robotl 'a Institute, Technical Report, pp. 25-30.

Khatib, O., 1985, "Real-Time Obstack Avoidaace for Manipulatom and
Mobile Robots." 1% IEEE International Confmnce on Robotics and
Automation. March 25-28, St. Louis, pp. 500-505.

Krogh. B. H., 1984, "A Generalized Potential Reld Approach to Obstacle
Avoidance Control." urnatl 'onal Robotics Research Co- Beth-
lehem, PA, August.

Krogb, B. H. and Thorpe, C E, 1986, 'Integrated Path Planning and Dynamic
Steering Control for Autonomous Vehicles." PmaxdiF-.
International Conference on IQbotia and Au- sen FRncisoo,
California, April 7-10, pp. 16644669.

Mmvec, H. P. and Elfes, A., 1985, Wgh Resolution Maps from Wide Angle
Sonar.'

Moravec, H. P., 1986, 'Certainty Grid0 f&r Mobite Robots.' Preprint of

EE Conference on Robotic9 and Au tomatigg

t' 't TechnicaIReport.

Thorpe, C E, 1983). "Path Relaxation: Path Planning for a Mobile Robot.'
bo th Institute. Mob ile Robots Cameeie-Mellon Universitv. The Ro

Laboratow. Aut- Mobile

Weisbin, C R, de Saussure, G., and Kammer, D., 1986, "SELF-
CONTROLLED. A Real-Time Expert System for an Autonomous Mobile
Robot"9m~uters in Mechanical Enn 'neering, September, pp. 12-19.

pp. 39-42

MAINTAINABILITY ANALYSIS FOR INTELLIGENT CONTROLS

Dev Raheja
Technology Management, Inc.
9811 Mallard Drive, Suite 213
Laurel, Maryland 20708 USA

Gita Rahe ja
Patni Computers, Rombay, India

Introduction

An intelligent software not only uses
logical experience but also overcomes the
weaknesses in the hardware/software inter-
face. It knows how the hardware will fail
and prepares to assume the most efficient
control. This paper covers the software
analysis methodology to minimize the down-
time from software as well as the vulnerable
hardware.

The downtime can result from the soft-
ware's inherent design. If one looks at the
costs of downtime from software, it is in
multi proportion to downtime costs due to
hardware. It is understandable that the
invisible nature of software makes it diff-
icult to troubleshoot, but the costs today
are dangerously out of control. Some rea-
sons are: incomplete specifications, absence
of design for maintainability, and poorly
structured programming. The most ignored
element in this list is design for maintain-
ability.

Software Maintainability -
What is it ?

Software maintainability is the charac-
teristic of software design and can be ex-
pressed as the probability that the down-
time caused by software error shall be no
more than the specified time when maintena-
nce action is performed in accordance with
the prescribed procedures and resources.
Some try to include the ability to modify
the software as part of maintainability but
then they are really referring to "Adopta-
bility". Maintainability is generally not
quantified because the above definition
contains several qualitative factors. It
assumes the resources such as trouble-
shooting procedures are standardized and
that the trained manpower is available all
the time. Some parameters related to main-
tainability such as maximum downtime, and
software recovery time, and inherent avail-
ability (percent uptime) can be specified.

Reducing Downtime Inherently
in Design

The problem of measuring maintaina-
bility is larger. The software error once
removed, is not expected to reappear except
from a different cause. And if the soft-

0-8186-2012-9/89/0000/0385$01 .CO 0 1989 IEEE 385

ware engineer knew about the error in advance,
he/she will correct it at the outset. In
short, the error removal time is unpredict-
able. The software engineer's answer to main-
tainability then isto use proactive analyses
in predicting the possible type of errors and
design the software to locate and fix them
fast. Typically, the errors and their pro-
portions could be the following as reported
by Chenoweth and Schulmeyer (IEEE COMPSAC 86
Proceedings :

Logic errors 21.29
Input/Output errors 14.74
Data handling errors 14.49

8.34 Compu ta t ional errors
7.83 Preset database errors
7 . 7 0 User interface errors
6.25 Documentation errors
5.62 Routine to routine

interface errors

percent
percent
percent
percent
percent
percent
percent
percent

In this list the logic errors are 21.29
percent but actually they are much higher.
These errors are hidden in the other catago-
ries and may account for as much as 60 per-
cent. Not included in this list are environ-
mental failures from hardware causes and
human errors. A maintainable software is
therefore designed to repair fast inspite of
logic and other forms of errors. Let's look
at some design features required that should
reduce downtime should an error occur.

Modular Design: will isolate the error to a
module level and help reduce downtime from
going through the entire software.

Structured Program: will offer clues to
errors faster than unstructured program. The
top-down structure may even speed up the
process of fault isolation.

Testable Desisn: will be able to test impor-
tant paths which may be not observable other-
wise.

Fault Tolerant Design: will often incorporate
triple modular redundancy.
downtime conceptually and the software will
w o r k as long as at least one module works.
The designs could include similar features
such as fault masking and fault avoidance.

It will avoid

Self Testing Design: can perform internal
checks. IBM 3081 mainframe has a maintenance
processor inside the host computer to monitor
software and the hardware parameters.

Unambiguous System Requirements: will incorp-
orate specifications based on a thorough
analysis of predicted downtimes. It will in-
clude limits on downtime, and will incorporate
most of the features mentioned above. System
Requirements Definition is the first place
and the most important one where maintain-
ability effort is most productive.

Above design features form the core
requirements to reduce downtime from logic
errors. Other requirements may be added. A
similar listing of requirements should be
developed to quickly recover from Coding
errors. For example, high level languages
and reusable software are used to avoid 01
prevent coding errors (best way to recover
from an error is not to have one). Require-
ments such as signature analysis can be used
to isolate certain coding errors. Similarly,
error detection codes can be used to quickly
identify input/output errors, and inclusion
of the "retry" operation can overcome erro-
neus outputs due to voltage transients.

Using Analysis to Overcome
System Vulnerability

This method makes use of systematic
analysis such as Failure Modes, Effects and
Criticality Analysis (PMECA) or equivalent
methodology. The purpose is to predict miss-
ing requirements that could help in reducing
the downtime. For example: Let us suppose
that a software activates a red light bulb to
indicate a dangerous condition. It is likely
that the light bulb itself could burn out.
If the software is not coded to detect the
bulb failure, then there can be an enormous
downtime or even a permanent damage t o the
system. This then becomes the missing re-
quirement in the specification.
FMECA. sometimes called FMEA, can overcome
many similar deficiencies.
below will illustrate the use of this
technique.

The software

The case history

The procedure

Hardware is inherently vulnerable to
component failures. An intelligent software
should be designed to anticipate such fail-
ures and take corrective actions. But the
most difficult task is(for the software
designerlto predict failures of the hardware.
Fortunately, there are tools for predicting
malfunctions. One such tool is Software
Failure Mode, Effects, and Analysis (SFMEA).
Below is the description of this technique.

The analysis is done as soon as the
first draft of the System Requirements Speci-
fication is complete. BO coding should be
done unless this analysis is complete because
many missing requirements are likely to be
revealed during this analysis. This is a
systematic analysis of the software flow
logic. It identifies what could go wrong
during each software task and what kind of
design action should be taken to build the

intelligence in the software to avoid down-
time. The steps are (a) construct the prog-
ram instruction flow chart or pseudo code
from the System Requirements Definition.
(b) document maintainability requirements,
and (c) use SFMEA table to identify new
requirements to overcome hardware vulner-
Ability.

Constructing the Program Instruction Plow
Chart

Figure 1 shows an overhead conveyor
system for an automated material handling
process. The system description is as
follows: The plastic bucket comes in empty on
the conveyor. Each bucket lands on a sensor
which activates the drum to tilt. The bucket
waits for In' seconds during which the food
product is filled in the bucket. The bucket
then goes to a saale which controls the
product inventory. A bar coder then codes
the bucket for its destination to a designa-
ted production line. Finally, the bucket
passes through a dispatcher device which
reads the bar code and routes the bucket.
The entire process is controlled by the soft-
ware. The objective is to prevent the pro-
cess from stopping and prevent food from
spilling over the buckets.

I
Figure 1. The Process Description

Documenting Maintainability Requirements

Unless the maintainability parameters
are included in the System Requirements Speci-
fications, they are likely to be ignored. In
this case, some requirements area

.The software shall manage the process
such that no product shall spill from
too much product in the bucket or
iron a malfunction of the syater (All
spills require the process to shut
down).

.The joint availability of the soft-
ware/hardware system shall be at
least 95% (Downtime no more than 5 9) .
The software shall exercise intelli-
gent controls to prevent downtime
from hardware malfunctions.

.The s o f t w a r e s h a l l p e r f o r m s e l f -
t e s t s t o a s s u r e r e l i a b i l i t y each
t i m e t h e p r o c e s s s t a r t s a f t e r a
shutdown.

.The s o f t w a r e s h a l l i s o l a t e a l l c r i t i -
c a l and ma jo r f a u l t s t o a v o i d t h e
t i m e r e q u i r e d t o d i a g n o s e them. Such
f a u l t s s h a l l b e i d e n t i f i e d i n t h e
S o f t w a r e R a i l u r e Mode and E f f e c t s
A n a l y s i s , as c a t a g o r y I and I1 i t e m s .

S o f t w a r e F a i l u r e Mode and E f f e c t s
A n a l y s i s (SFMEA)

T h i s is a s y s t e m a t i c a n a l y s i s t o uncove r
weaknesses and m i s s i n g r e q u i r e m e n t s i n t h e
s o f t w a r e s p e c i f i c a t i o n s . Each t a s k i n t h e
s o f t w a r e i s a n a l y z e d f o r what c a n go wrong
w h i l e t h e t a s k i s b e i n g pe r fo rmed . The
c r i t i c a l q u e s t i o n s a r e :

.What c a n go wrong w i t h t h e ha rdware?

. I s s o f t w a r e c a p a b l e o f s w i t c h i n g t o
a n a l t e r n a t e mode o r a p p r o p r i a t e
c o r r e c t i v e a c t i o n t o p r e v e n t down-
t i m e ?

I f t h e answer t o t h e l a t e r i s ' N o ' , t h e
weakness i n t h e s o f t w a r e i n t e l l i g e n c e i s
o b v i o u s . I n o t h e r words , some r e q u i r e m e n t .
i n t h e s o f t w a r e s h o u l d have been t h e r e , b u t
i t i s m i s s i n g .

F i g u r e 2 shows t h e f l o w c h a r t . I t shows
a l l t h e s o f t w a r e t a s k s s e q u e n t i a l l y . Each
t a s k i s a s s i g n e d a number f o r t r a c e a b i l i t y .

PROGM lMSlRUCTlON FLOWCHART
(BULK FOOD TWNSPORTATION)

/ 101 1 BUCKET READS SENSOR P O S I T I O N A N D CORES TO A STOP

I [a A C T I V I T E DRUM TO DROP BULK P R O W C T

R E I D LCALE P O S I T I O N AND ' T O P AT SCALE

BUCKEl GETS BAR CODE

BUCKET READS D I S P A T C H I N F 9 R W T I O N

BUCKE' MOVES TO D E S l G N A T l 3 PRODUCTION L I N E

F i g u r e 3 shows a p o r t i o n of SFMEA w i t h
a n e x p l a n a t i o n below.

Column 1 shows each s o f t w a r e t a s k .

Column 2 shows s y s t e m v u l n e r a b i l i t y (f a i l u r e
mode) i n c l u d i n g t h e v u l n e r a b i l i t y o f
t h e s o f t w a r e due t o c o d i n g e r r o r s ,
i n p u t / o u t p u t e r r o r s , and t h e p r o g -
ram changes .

Column 3 c o n t a i n s t h e e f f e c t s o f v u l n e r -
a b i l i t y on t h e s y s t e m .

Column 4 shows how c r i t i c a l t h e v a l u e of
downtime i s . I n t h i s t a b l e , c a t a -
go ry I s t a n d s f o r un ' accep tab le
downtime, 11 f o r ma jo r downtime,
I11 f o r minor downtime, and I V f o r
a c c e p t a b l e downtime.

Column 5 c o n t a i n s t h e recommendat ion a f t e r a
c a r e f u l r e v i e w o f t h e d e s i g n . I t
i d e n t i f i e s what new t a s k t h e s o f t -
ware w i l l p e r f o r m t o a v o i d sys t em
downtime. A change i n t h e ha rdware
d e s i g n may a l s o be r e q u i r e d . To
p r e v e n t i n h e r e n t downtime from s o f t -
w a r e , o h e s h o u l d q u e s t i o n t h e p o s s i -
b i l i t y of i n p u t / o u t p u t e r r o r s , d a t a
h a n d l i n g e r r o r s , and u s e r i n t e r f a c e
e r r o r s . S o f t w a r e d e s i g n may need
changes t o a v o i d downtime from t h e s e
e r r o r s .

Examples o f Deve lop inq
New Requirements

L e t ' s l o o k a t t a s k 1 0 1 . The b u c k e t
s t a n d s on t h e s e n s o r and a s o f t w a r e command
i s e x p e c t e d t o h a l t t h e conveyor . The f a i l -
u r e mode (v u l n e r a b i l i t y) i s t h a t t h e s o f t -
ware g i v e s command t o s t o p , b u t t h e wrong
b i t w inds u p i n t h e memory. A s a r e s u l t t h e
conveyor w i l l n o t s t o p and t h e b u c k e t s may
p i l e up on each o t h e r f u r t h e r i n t h e p r o -
c e s s . Column 4 shows t h a t t h e c r i t i c a l i t y
i s n o t v e r y h i g h b e a c u s e t h e b u c k e t s a r e
empty b u t t h e downtime c o u l d be s u b s t a n t i a l .
Column 5 shows t h a t t h e s o f t w a r e needs t o
check t h a t t h e b u c k e t i s i n d e e d f u l l a f t e r
it l e f t t h e s e n s o r and c o n s i d e r t h i s f e e d -
back b e f o r e more b u c k e t s a r e a l l o w e d t o go.
To minimize downtime, t h e s o f t w a r e must a l s o
i s o l a t e t h i s f a u l t and i s s u e a p r i n t s t a t e -
ment t o ma in tenance p e r s o n n e l . A more i n -
t e l l i g e n t s o f t w a r e w i l l a u t o m a t i c a l l y s w i t c h
o v e r t o a r e d u n d a n t s e n s o r and a s s u r e q u i c k -
e s t r e p a i r of t h e f a i l e d s e n s o r . T h i s w i l l
c a l l f o r some a d d i t i o n a l ha rdware a l s o .

L e t ' s l o o k a t one more t a s k : t a s k 201.
In t h i s t a s k t h e b u c k e t i s e x p e c t e d t o w a i t
I n ' s e c o n d s . The n e x t column q u e s t i o n s
"What Can G o Wrong", w h i l e s o f t w a r e i s p e r -
fo rming t h i s t a s k (f a i l u r e mode) . One f a i -
l u r e mode i s t h a t t h e t i m e r may m a l f u n c t i o n
and t h e s o f t w a r e does n o t know i t . The
" e f f e c t " i s t h a t t h e p r o d u c t w i l l o v e r f i l l
t h e b u c k e t and s p i l l . T h i s becomes a p o t e n -
t i a l h e a l t h h a z a r d b e c a u s e someone can p u t
t h e c o n t a m i n a t e d p r o d u c t back i n t o t h e
b u c k e t .

F i g u r e 2 . Program I n s t r u c t i o n Flow

387

SOFTWARE FAILURE llODE AND EFFECTS ANALYSIS (SFEN

101 SOFTWARE READS
BUCKET POS1TION
ON SENSOR AN0
STOPS BUCKET

WON6 B I T IN THE
MEMORY POSITION

102 ACTIVATES DRUM T I L T MECHANlSn
TO DROP BUCK SWITCH MAY NOT WORK

DUE TO WRONG B I T I N PRODUCT 1 MEWRY

201 BUCKET WAITS
FOR N SECONDS

103 READS SCALE
EUPTY AND STOP
BUCKET AT SCALE

T I L T MCHANIS l
SWITCH MAY F A I L
AFTER THE DRM IS
TILTED

BUCKET WAITS LONBER
BECAUSE OF CLOCK
EULFUNCTION

WRON6 COMMND TO
CLOCK BECAUSE OF
WKTAGE TRANSIENT

SWE MAY NOT BE
EUPTY

SYSTUl

BUCKETS MOVE
EMPTY AND P ILE
ON EACH OTHER

r-i II

388

-

11

PRODUCT OVER-
SPILLS ON
PRODUCTION
FLOOR

PRODUCT SPILLS

I

I

Figure 3. SFMEA Example

The criticality rank is I. The recom-
mendation column now introduces a 'newu
requirement" that the software should con-
stantly check the timer performance. Such
requirements are sooner or later introduced
out of necessity, but it i s cheaper to put
this missing requirement in early design. By
the tine this analysis was complete, more
than 200 software requirements were added to
the specification.

Conclusion

Software maintainability can use a lot
of ideas from hardware maintainability. One
should note that an analysis like this lets
the software engineer ask etructured ques-
tions on vulnerability but identifying addi-
tional requirements depends on the indivi- .
dual. It is, therefore, possible to still
m i s s many design requirements. A critical
software design should include some more
proactive analyses such as fault tree ana-
lysis and sneak circuit analysis.

DESISN CHANGE

INCORWRATS ERROR
DETECTION CODE AND
GIVE A PRINT COPIIIM(D

DkIW ADDITIONAL
swticn SOFTWARE TO
FUG F~ILURE OF ANY
swmn

SOFTWARE TO CHECK

WITH CLOCK A AND REDUWDHIT tRjNIE&Ds

DEVIATION -
cLoEa PERFORWCE

INCORPORATE .RETRY'

rROvIDE FEEDBACK
LOOP WHEN A BUCKET
LEAVES TtU? SCALE

--

