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ABSTRACT. The full automation of machine tools requires reliable techniques
for on-line sensing of tool wear and breakage. This paper proposes a model-based
approach for on-line tool wear estimation. The proposed approach, which is based
on cutting force measurements, is designed to operate under varying cutting
variables dictated by the workpiece configuration and surface finish requirements.
The approach, which uses parameter estimation techniques to track tool wear
during cutting, is experimentally demonstrated for a turning operation. The
estimated values of tool wear are in good agreement with the actual values of
tool wear measured intermittently during the cut.

INTRODUCTION. The full automation of machine tools
requires reliable techniques for on-line sensing of tool wear
and breakage [1,2]. The on-line sensing of tool wear, an
essential part of any realistic adaptive control optimization
(ACO) system, is particularly important in efficient schedul-
ing of machine down time for tool changing and for tool
failure detection. Unfortunately, despite years of research
in this area, a reliable on-line tool wear measurement tech-
nique does not exist [3].

The on-line tool wear measurement problem has been in-
vestigated by numerous researchers [4]. The proposed meth-
ods can be categorized into two groups: direct and indirect.
Direct methods, as the name implies, make an assessment
of tool wear by either evaluating the worn surface by optical
methods, or measuring the material loss of the tool by ra-
diometric techniques. The main difficulty with using optical
methods is their long processing time which makes them un-
suitable for on-line tool wear measurement, and their limited
application to cases where the surface of the tool is visually
accessible during the operation [5]. The difficulty with the
application of radiometric techniques on the shop floor is
their requirements for special preparation of the tool and
potential hazards due to radioactivity [6].

Indirect methods, on the other hand, are based on utiliz-
ing signals such as force or torque, temperature, tool vibra-
tion, or acoustic emissions [7-10]. These techniques which
estimate tool wear by correlating it with the measured pro-
cess variable use different approaches to find such a cor-
relation. Some approaches rely on a detailed mechanistic
model of the cutting process (e.g., [11]), while others use
empirical relationships between the measured variable and
tool wear (e.g., [12]). The mechanistic approach has con-
tributed greatly to the basic understanding of the cutting
process, while the empirical approach has been useful for
specific tool-workpiece combinations and constant cutting
conditions. Both the mechanistic and empirical approach
have certain limitations, however, when applied to on-line
tool wear estimation.
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The mechanistic approach, which relies on the mathe-
matical modeling of the physics of cutting, due to the inher-
ent complexity of the cutting process and our incomplete
understanding of it, is limited in applicability. Moreover,
since the coefficients and exponents of these models change
with tool-workpiece combinations and cutting conditions,
extensive off-line testing is required for each case. Another
limitation in the utilization of the mechanistic approach is
the lack of appropriate sensors. For example, most models
developed by this approach emphasize the relationship be-
tween tool wear and temperature (e.g., [13]). The absence
of a practical temperature sensor limits the application of
these models.

The empirical approach, on the other hand, relies on ex-
perimentally observed relationships to detect tool failure or
estimate tool wear. The empirical methods for tool wear
estimation usually consider a “black box” approach with a
relationship between variables (e.g., force and flank wear).
Therefore, they fail to separate the effect of other variables
involved in the process (e.g., the effect of changes in the
cutting variables on force). This usually causes serious lim-
itations when the cutting variables are changed due to part
configuration.

The objective of this paper is to present an approach
which estimates tool wear in the presence of varying depth
of cut. This approach uses a mathematical model to identify
the effect of tool wear. This model, which uses the cutting
force as the measured variable, separates the effect of tool
wear from any effects caused by variations in the depth of
cut. Therefore, it continues to identify the effect of tool
wear despite the varying cutting variable (depth of cut in
this case).

The proposed approach uses on-line parameter estima-
tion techniques to estimate the model parameters. There-
fore, it does not require a data base and prior off-line testing.
The effect of tool wear is identified by estimating a param-
eter which is proportional to the tool wear.

The next sections present (i) the model proposed and



approach used to estimate the tool wear related parameter
along with simulation results demonstrating the application
of the approach, (ii) the implementation of the proposed
approach in an actual case where the depth of cut varies in
steps and (iii) analysis and evaluation of the results.

METHODOLOGY. In order to separate the effect of tool
wear on the cutting force from any effects caused by vari-
ations in the cutting variables, the total cutting force (F)
can be separated into two components [14,15] such that

F=F + AF (1)

where Fp is the cutting force when the tool is sharp, and
AF is a function of the flank wear W. Both Fy and AF are
functions of the cutting variables (cutting speed, feed, and
depth of cut).

The methodology used here for tool wear estimation is to
identify and subtract F, from F so that AF, the component
affected by wear, can be obtained. The obtained AF is
always a function of the cutting conditions. If only depth of
cut varies in the process, the model considered for AF has
the form [16]

AF =CdW (2)

where C is a constant depending on tool and workpiece ma-
terial and d is the depth of cut. We further assume that for a
constant cutting speed and feed the wear rate is almost con-
stant during most of the cut and that it only increases during
the accelerated tool wear period where the tool reaches its
allowable wear limit very rapidly. This assumption implies
that we can write

W =Wt (3)

where the wear rate W is a function of the cutting speed and
feed and is independent of the depth of cut. Substituting
Eq. (3) into (2) yields

AF = Xd°t (4)

where
X=CW (5)
The objective here is to estimate the value of X which is pro-
portional to the wear rate and consequently estimate CW
which can be obtained by the intergration of X in time. The

estimation of X is based upon measuring the rate of cutting
force increase during cutting

i Sl (6)

and separating X from df.

The approach proposed here to separate X from d” is
based on the assumption that W is not a function of d.
In order to measure the rate of cutting force increase the
abrupt changes in the cutting force signal caused by step
changes in the depth of cut are removed from the cutting
force signal at each interval k. An interval is defined here
as the segment of the cut where the cutting variables are
kept constant. Only the segment AF; affected by wear at
constant cutting conditions during the interval is analyzed.
The obtained AF}, given by

AF, =Xdfr (7)

can now be used to estimate X and 8 (assuming that X is
independent of d). Note that AF, is the force increase in
interval k, and r is the time measured from the beginning
of this interval (see Fig. 1).
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Fig.1 Schematic of the computation of slop S in the proposed
approach.

For estimation purposes, the cutting force is sampled at
constant sampling rate of 2 HZ. The slope, S, defined as

AF
T

S = X df (8)
is fed into the estimator at every sample point and X and
B are estimated with a least-squares parameter estimator
(the algorithm is shown in the Appendix). It should be
emphasized again that we are assuming the change in the
slope is solely caused by the different value of the depth of
cut and that wear rate is not affected by this depth of cut.

In order to use the ordinary least-squares parameter es-
timator, the estimation model must be linear in parameters

(see the Appendix). For a large signal-to-noise ratio Eq. (8)
can be written as

logS = log X + B logd; . 9)
This format fits the linear equation
Yy = ¢T 0,

where ¢ is a vector of known variables, defined here as

(10)

¢7 = [1 logdy ] (11)

and 0 is a vector of unknown parameters, defined here as
6" = [logX B] (12)

The performance of the above approach was tested in
digital simulation. We assume that only the depth of cut is
changed during the cut, and that the wear rate is indepen-
dent of the depth of cut. The model used for the simulation
of the cutting force is

F, = 500d°° ,

AF = 30d°°wW
and
W = 0.05¢t + 0.002t?

where in this case from Eq. (5)
X = 30W

Figures 2 and 3 show the estimated W and [i respec-
tively. The estimated CW, which is proportional to wear,

has been obtained by integrating X which in discrete-time
formulation has the form
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Fig.2 Simulation results of the estimated and the “real” CW
( without noise ).
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Fig.3 Simulation results of the estimated and the “real” B
( without noise ).
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Fig.4 . Unfiltered force signal F and filtered force signal Fy
in the simulation.

CW(t+1) = CW(t) + XT (13)

where T is the sampling period.

The difference between the estimated values and the
“real” ones in Figs. 2 and 3 is due to the fact that our
approach assumes a constant wear rate whereas the “real”
wear rate used in the simulation is: 0.05 + 0.004 t.
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Fig.5 Simulation results of the estimated and the “real” CW
( with noise superimposed ).
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Fig.6 Simulation results of the estimated and the “real” g
( with noise superimposed ).

In order to study the performance of the approach in
presence of noise, a psudo-random binary sequence was added
to the simulated signal. Since the presence of noise causes
significant problems in identifying the true AF, a digital
filter was used to reduce the noise. The selected filter, how-
ever, introduces certain amount of distortion in the data (see
Fig. 4) which affects the identification of AF. In order to
neutralize this distortion the selection of AF is delayed for
a few sampling intervals after each step change in the depth
of cut. Figures 5 and 6 show the estimated parameters of
the filtered data. Comparing Figure 2 and 5 shows that the
difference between the estimated value and the “real” one
changes only slightly, which demonstrates that the method
can be used with the presence of noise.

EXPERIMENTAL RESULTS. In order to test the per-

formance of the proposed approach in practice, turning ex-
periments were designed and performed. The approach pro-
posed by the authors assumes flank wear to be the dominant
type of tool wear. Therefore, cutting conditions were se-
lected to produce only flank wear during the cut. Table 1
shows the cutting conditions as well as the workpiece and
tool combination used. These cutting conditions were also
selected to generate rapid flank wear, so that long cuts were
avoided. Four tests were performed of which three were con-
tinued until the tool failed. During all these tests the depth
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Fig.7 Normal cutting force component, F and the depth
of cut, d of the 1st test.
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Fig.8 Normal cutting force component, F and the depth
of cut, d of the 2nd test.

Table 1  Cutting variables, tool and workpiece
material
Test No. | Tool | Workpiece | Feed | Cutting
speed

1 TNWA
2 432E 4340 0.001 1200
3 TNMA ann’d in/rev | ft/min
4 434F

of cut was changed in steps. Figures 7 - 10 show the varia-
tions of the depth of cut in the above tests. The length of
cut for each step in d was 0.3 inch. The tests were designed
to maintain a constant cutting speed at the different diame-
ters caused by the different depth of cuts. The actual flank
wear was also measured intermittently during the tests by
a tool-makers microscope.

The experiments were carried out on a Lodge & Ship-
ley 10/25 Bar Chucker CNC lathe with General Electric
Mark Century 2000T controller. The transducer used was
Type 9257A Three Component Kistler force dynamometer
with three Model 5004 Kistler Dual Mode charge amplifiers.
In order to avoid repeating the tests for signal processing
purposes the cutting force signals were recorded on an in-
strumentation tape recorder. A Model Store 7DS Racal tape
recorder was used for this purpose. The minicomputer used
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Fig.9 Normal cutting force component, F and the depth
of cut, d of the 3rd test.
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Fig.10 Normal cutting force component, F and the depth
of cut, d of the 4th test.

was DEC LSI-11/28 Plus which used a 12 bit ADV-11-C
A/D convertor. The sampling frequency used for digitiza-
tion was 2 Hz which was sufficient in keeping track of tool
wear which is inherently a slow process. Also, in order to
avoid aliasing, Khron-Hite Digitally Tunned 3320 Series fil-
ters were used as low pass filters. The attenuation frequency
was selected at 1 Hz, which was half the sampling frequency.

Figures 7 - 10 also show the normal component of the
cutting force in the above tests. Based on the above results
the following observations can be made:

o The magnitudes of the cutting forces were not quite
consistent with the related d’s (e.g., see Fig. 7, cuts
# 4 and 5, where the cutting force is considerably
different for the same depth of cuts). It should be
emphasized that particular care was taken in the above
tests to maintain the d’s at the prespecified values, and
that the diameter of the workpiece was measured after
each cut to assure accurate results.

At the points where a cut with a different depth of
cut started, the cutting force showed a transitionary
period before the steady state was reached. This tran-
sitionary period generally contained a rather sharp
jump which could be interpreted as tool failure. Since
in the proposed approach tool wear estimation is based
on the steady state cutting situation, it is necessary
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Fig.11 Filtered force signal, F; and modified filtered force

signal, B

to bypass these transitionary periods when evaluating
the data. Of course, one should note that if tool fail-
ure does occur during this transitionary period, it will

be undetected, therefore, a different algorithm should
be added for detection of tool breakage.

o The cutting force signal showed a distinct indication
of tool breakage in tests # 1 - 3 (see Figs. 7 - 9).
The tools in these tests, however, broke at a differ-
ent corner from the cutting edge, which means that
the tools had not necessarily reached their wear limit.
This rather peculiar type of tool failure is perhaps due
to the unusually small feeds used in the tests.

In order to use the cutting force data for estimation pur-

poses, certain signal processing provisions had to be taken
into consideration:

e The cutting force signal contained a fair amount of
noise which must be eliminated for the purpose of sig-
nal processing. For this purpose a first order digital
filter was used. This digital filter which had the trans-

fer function
0.22

z—0.78

was designed to have a time constant of 2 seconds.
Figure 11 shows a portion of the filtered data in test
# 1. The data in this figure is distorted considerably
at the steps (the transitionary period has been pro-
longed) which would cause long delays in parameter
estimation to bypass. To avoid these long delays, it
was decided to reset the digital filter at the beginning
of each step and apply it during the steady state pe-
riod. The output of this modified filter is also shown
in Fig. 11. In order to further avoid any transients
during estimation the data feeding to the estimator
was delayed for about 2 sec after each step.

G(2) =

e According to our basic assumption for tool wear es-
timation the slope of the force signal should be ei-
ther postive or zero (for cases where tool wear stays
constant). The cutting force data obtained from the
above tests showed some instances where the slope
was negative. Since according to our model a nega-
tive slope would mean an impossible reduction in tool

wear, the periods of negative slope were taken as zero
in estimation.
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Fig.13 Estimated CW vs. measured flank wear, W.

The filtered cutting force data were used for tool wear
estimation. The estimation results are shown in Figs. 12
and 13. Based on these results the following observations
can be made:

1. The CW values show a continuously increasing trend.
These values are also plotted versus the measured tool
wear values in Fig. 13. According to this figure there
is an initial offset (see Fig. 13) in the estimated results.
This could be due to the lesser effect of wear on the
cutting force data at the initial stages of tool wear
development.

2. The CW values, however, do not identify tool failure,
which is distinctly clear in the cutting force signal.
The ineffectiveness of the estimator in detecting tool
breakage is due to neglecting the cutting force varia-
tions at the steps.

SUMMARY AND CONCLUSIONS. A model-based

approach has been introduced to estimate tool wear despite
varying cutting conditions. It uses the normal component
of the cutting force as the measured variable and utilizes
on-line parameter estimation to keep track of the tool wear
increase. The approach has been both tested in digital sim-
ulation and implemented on the shop floor. The experi-




mental results show agreement between the actual values
of the tool wear (measured during the test) and the esti-
mated ones. The estimation results, however, indicate that
the early stages of tool wear cannot be identified from cut-
ting force data. These results also fail to show tool breakage
which occurs at the step changes.
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APPENDIX

Parameter Estimation Algorithm. A recursive least squares
parameter estimation algorithm has the general form [17],

Pk —2)p(k —1)
B+ ok — 1)TP(k — 2)¢(k — 1)

B(k) = 8(k—1) + o(k) (14)

Pk —2)¢(k — 1)8(k — 1)"P(k — 2)
B+ ¢(k — 1)TP(k — 2)¢(k 63

1

P(k-1) =7

P(k—2)—

where y(k) is the value of the measured variable y at time
t'= kAt for'k = 01152, w.... . P(k) is the matrix of es-
timation gains, 8 provides exponential data weighting, and
(k) is the parameter estimation error . ¢(k) is the vec-
tor of measured (or known) variables, and #(k) is a vector
of parameter estimates. The above algorithm recursively
updates the estimated parameter vector 9(10) defined as

(k) = [ ay(k) @a(k) .o an(k) Bo(k) by(k) ... bo(K) ]
(16)
for any process whose equations can be written in the form,
y(k) = ¢(k—1)T 6(k) a7

Thus, the process model must be written in a form that is
linear in the unknown parameters, which are the elements
of the vector 8(k). The vector ¢(k) and the estimation error
D(k) are defined as

d(—1)T = —y(k—1) —ylk—2) ... —y(k —n) u(k)
u(k—1) ... u(k —m) | (18)

and
o(k) = [y(k) — ¢(k — 1)T8(k — 1)) (19)




