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1. Introduction 
Manufacturers today face more challenges than ever before due to the highly volatile 
market, which creates large fluctuations in product demand. To remain competitive, 
companies must design manufacturing systems that not only produce high-quality 
products at low cost, but also respond to market changes in an economical way [1]. 
 
Reconfigurable manufacturing systems (RMS) have been suggested by Koren et al [2] as 
a solution to address the needs for meeting the changing product demands. This has been 
recognized and supported later by other researchers [3-7]. From the viewpoint of RMS, 
a manufacturing system should be designed in such a way that it can be rapidly and cost-
effectively reconfigured to the exact capacity needed to match the market demand. The 
capability of manufacturing systems to adapt their throughputs to changing demands is 
called scalability. 

Scalability is an important system design characteristic in markets with volatile demand, 
and its cost-effective solution requires knowledge from engineering and business [8].  
Researchers at the ERC/RMS [9], have addressed system scalability since the late 1990’s 
[10], and issued a patent that deals with strategies to change production capacity in 
reconfigurable manufacturing systems (RMS) [11].  They developed one of the first 
algorithms that address capacity scalability [12], but this early algorithm was limited to 
upgrading the capacity of serial lines only. A more comprehensive approach was 
presented in [13] where scalability was analyzed as one of the critical issues in designing 
large, complex machining systems. Capacity scalability may be also achieved by scaling 
the capacity of individual pieces of equipment [5,6,14,15,16], but the most practical 
approach to system scalability adding machines to existing manufacturing systems, and in 
this cases the original system layout design is critical for achieving cost-effective 
scalability [17]. 

A dynamic model for capacity scalability analysis in reconfigurable manufacturing 
systems is introduced in [4]. This dynamic model is associated with minimizing the delay 
in scaling the system’s capacity and thereby improving the RMS performance in response 
to sudden demand changes. However, in this current paper we deal with optimizing the 
original system layout [3,5] such that adding machines when needed by the market 
demand will be done quickly and cost effectively. Simultaneously with adding machines, 
also the material handling system must be adapted to serve the new added machines. 
There are cases in which several AGVs form the material transport system [18], but 
although AGVs facilitate the part transfer to and from the new machines, AGVs are 
expensive and slow, and therefore are not regarded as a cost-effective solution. There are 
cases in which RMS are designed to produce several products simultaneously [19, 20]. In 
such systems the capacity design issue is more complex and it is beyond the scope of this 
paper. 
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With the advancement of machine technologies over the past decade, the production of 
medium-to-high volume, large size mechanical parts, such as automotive powertrain 
components, has undergone a transformation. Dedicated transfer lines with dedicated 
machine stations are being replaced with systems composed of flexible CNC machine 
tools. As shown in Fig. 1, this system architecture is composed of multiple parallel CNC 
machines at each stage, with all machines performing exactly the same machining tasks, 
[21]. Such configurations of parallel identical machines in each stage, with material 
transfer between the stages (also known as crossover) improve throughput and reduce 
work-in-process inventories [22]. 

 

Figure 1: Schematic Layout of Production Lines with Conveyors and Gantries 
Each manufacturing system is designed with a specific capacity in mind to fulfill a 
planned forecasted demand.  However if the forecast for an annual product sale is 
between 250,000 and 300,000 units, marketing dictates building a capacity for 300,000 
units. Therefore, even if a system is optimally designed, capacity may be still wasted 
when the real demand is significantly lower than the full planned capacity. When 
considering the entire life cycle of a manufacturing system the periods in which the 
system is operated at the full capacity are usually short [23]. If, however, the investment 
in the excess capacity (for 50,000 units in this example) could be delayed until it is 
actually needed, the system lifetime cost can be significantly reduced. A system design-
for-scalability means that a manufacturing system is designed in a way that enables a 
rapid capacity upgrade to meet a larger demand, exactly when needed. 

This paper introduces a practical design-for-scalability method for reconfigurable 
manufacturing systems comprised of reconfigurable and/or CNC machines tools. 
A scalability planning methodology is presented to determine the most economical way 
to add machines to an existing system to match a new market demand.  It does so through 
concurrently changing system configuration and rebalancing the system. The reminder of 
this paper is structured as follows: Section 2 defines the system scalability and describes 
the concept of incrementally scaling system capacity. Section 3 introduces a 
mathematical formulation to minimize the total number of machines to be added by 
concurrently reconfiguring and rebalancing the system. Section 4 proposes heuristic 
algorithm based on a genetic algorithm. Section 5 presents case study to validate the 
proposed approach. Conclusions are presented in Section 6. 
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2. Defining System Scalability 
To adapt the throughput of manufacturing systems to the fluctuations in product demand, 
the system capacities must be adjusted quickly and cost-effectively. Capacity scalability 
of manufacturing systems is a necessary characteristic needed for rapidly adjusting the 
production capacity in discrete steps, allowing thereby a given system’s throughput to 
adjust from one yield to another to meet changing market demands. We define system 
scalability, in percentage, as: 

System Scalability = 100 – smallest incremental capacity in percentage 

If the minimal capacity increment by which the system output can be adjusted to meet 
new market demand is small, then the system is highly scalable. For example, if a serial 
line (Fig. 3a) needs to increase its production capacity to satisfy a larger market demand, 
an entire new line must be added. The step-size of this addition doubles the production 
capacity of the system. Mathematically, the minimum increment of adding production 
capacity in a serial line is 100% of the system, i.e., adding a whole new line, making the 
scalability of a serial line 0%. Doubling the line capacity will be expensive because there 
is no guarantee that the extra capacity will ever be fully utilized, risking a substantial 
financial loss. Thus, zero scalability means that in order to increase the system capacity, 
the entire production line must be duplicated.  

Dedicated lines do not have scalable capacity and cannot cope with large fluctuations 
in product demand. This challenge can only be met by flexible or reconfigurable 
manufacturing systems which are composed of singular CNC machines, as these systems 
are scalable in small increments accomplished by adding individual machines can be 
added as a need arises. 

Similar scalability calculations for the other systems in Fig. 3 show: Configuration b 
has a scalability of 50% and Configuration c has 67%.  Configurations d and e have a 
scalability of 84%; the highest possible for 6-machine configurations. A minimum 
increment of only one sixth of the system (16%) —in these cases, one machine— can be 
added to increase system capacity; for example, a machine can be added to stage 2 of 
Configurations d as shown in Fig. 3d. 

 

 
Fig 3. Five scalable configurations 

In this example, the configuration depicted in Fig. 3c of two stages with three machines 
per stage, might be a compromise between reasonable scalability and investment cost.  In 
this case, if a product requires machining on both the upper and side surfaces, the three 
machines in the first stage might be 3-axis vertical milling machines, and the three 
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machines in the second stage might be 3–axis horizontal milling machines. Conversely, 
in a parallel system, all six machines in Fig. 3e must be 5-axis milling machines – 
making the system much more expensive.  In the system in Fig. 3c, capacity scalability 
must be performed in steps of 33.3% by adding one vertical machine and one horizontal 
machine, rather than in steps of 16.6% as with the parallel configuration.  Adding a step 
of 16.6% in Fig. 3e in practice means adding one 5-axis machine with a large tool 
magazine that does the whole part processing.  

To conclude, in general, the smallest scalability adjustment steps can be 
accomplished when the original system is purely parallel (e.g., Fig. 3e). However, the 
initial cost of a parallel system is the highest of all system configurations. In parallel 
configurations, each machine must perform all the manufacturing tasks needed to 
complete the part. Therefore, each machine must have the entire set of tools needed to 
produce the whole part and should also be able to perform more functions, for which 
more axes of motion are needed.  As a result, the capital cost per additional volume 
increment added to a parallel configuration is the highest of all configurations.  

The following example clarifies the option of adding a small incremental capacity. 

Example: On a system composed of six machines, as shown in Fig. 4, we have to 
process a part that requires 21 machining tasks of 30 second each, totaling 630 seconds, or 
10.5 minutes, needed to machine each part. The required demand is 274 parts per 8-hour 
shift, namely 480 minutes. Therefore, the required cycle time is 480/274= 1.75 
minutes/part. 
  

a. Design a scalable system configuration. 
b. After one year, the demand has grown, and 320 parts per shift are needed, 

reducing the cycle time per part to 1.5 minutes/part. How many machines 
should be added, and what is the new configuration? 

The cost-effective scalable system configuration is depicted in Fig. 3d, which is shown in 
detail in Fig. 4. Here, each machine does seven tasks, totaling 210 seconds per machine. 
When the demand grows to 320 parts/day, seven machines are needed. Only 
Configuration d yields the cost-effective solution by adding the new machine to Stage 2.  
One task is shifted from Stage 1 to Stage 2 so each machine in Stage 1 operates for 180 
seconds on the part, and another task is shifted from Stage 3 to Stage 2; each machine in 
Stage 2 will then operate for 270 seconds on each part, as shown in Fig. 4b. 
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Fig. 4.  When demand grows, the 
initial system, a, is cost-
effectively scaled-up to 
Configuration b to meet the new 
demand 

 

The initial capital investment in the system configuration in Fig. 4 is a bit higher than one 
in a serial line, because the material handling system is more complex. However, the 
extra capital investment is similar to buying an insurance premium for a future event 
which is likely to occur. If the demand does rise, the system can easily be scaled up and 
the new demand can be supplied in a short time, at a minimum additional investment. If 
the demand is unchanged during the lifetime of the system, a small capital investment on 
the more sophisticated material handling system was lost.  

In this example, twenty-one equal tasks were needed to complete the part and the system 
with three stages and two machines per stage was perfectly scalable. In general, we will 
obtain similar scalability results in a symmetric configuration which has m stages and 
n machines per stage if the number of equal tasks needed to complete the part is: 

(n.m + 1)m. 

System design Fig. 4 the system designers must leave an empty space reserved for 
possible addition of a seventh machine and an extended material transport system to the 
spot.  

3. Formulation of Scalability Planning Problem 
 
We propose below a method to determine the most cost effective system reconfiguration 
to meet a new market demand. To perform system scalability planning, many factors 
need to be taken into consideration. These include a detailed process plan, setup plan, the 
machine capability, and the number of spots reserved for adding machines at each stage 
of the original system configuration. When reconfiguring an existing manufacturing 
system, simultaneous reconfiguration planning and system rebalancing attempts are 
needed to maximize the capacity of systems.  In this section, an optimization model is 
proposed for the scalability planning.  The solution to the model will be discussed in 
section 4. 
3.1 Assumptions 
The following assumptions are made based on the current industry practice in he 
powertrain industry.  

‒ A multi-stage system with configuration as shown in Fig. 1 is considered. Parts 
are moved from one stage to another through conveyors and delivered to different 
machines within a stage using gantries.   



6 
 

‒ The number of stages will remain unchanged during the reconfiguration process. 
This way, the system setups will not be changed  to avoid adjustment of the 
process plan, thereby minimizing impacts on the product quality. 

‒ All the machines within the same stage perform exactly the same tasks. 

‒ There are reserved spaces to add new machine in each stage and the gantries can 
be extended to deliver parts to the newly added machine(s). 

3.2 Inputs 

Scalability planning requires the following four types of inputs: 

• Configuration information 
Number of stages L; 
Number of machines in each stage Ni, where i = 1,2,…,L;  
Maximum number of machines allowed in each stage Mi, i = 1,2,…, L, which is 
restrained by the capability of material handling system.  

 
• Stage Characteristics 

Each manufacturing stage usually has limited capabilities which are defined by a 
group of key characteristics of the stage. These include machine tool capability such 
as functionality, power, accuracy and machining ranges, and fixture capability such as 
face accessibility, which defines the faces that are accessible by the cutting tool. 
When a set of tasks are assigned to a stage, the necessary capabilities must fall into 
the key characteristics of the stage, otherwise the task allocation is invalid.  
Assuming the number of key characteristics of each stage is K, a capability matrix S 
stores all possible key characteristics of each stage.  

djiS =],[ : d is jth key characteristic of stage i , where KjLi ≤≤≤≤ 1,1  

• Manufacturing tasks 
‒ Task Precedence Tree: manufacturing tasks must be performed at a certain order. 

This tree defines sequential constraints between tasks. Each task in the 
precedence tree can only be performed after all its parent tasks have been 
completed. A two-dimension binary matrix ]1,1[ NNPre  , where N is the 
number of tasks to be processed, is used to represent the precedence tree. 

⎩
⎨
⎧

=
otherwise0,

j task before performed bemust  itask if,1
],[ jiPre  

‒ Task Key Characteristics: These include task type, access direction, dimension, 
accuracy and power needed to perform the task. For a task to be assigned to a 
stage, its key characteristics must fall in the key characteristics of the stage. 
Assuming the number of key characteristic of each task is R, a task key 
characteristic matrix K is used to store the key characteristic of each task. 

fjiK =],[ : f is the jth key characteristic of task i. Where Ni ≤≤1 and 
Rj ≤≤1 . 
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• Machine reliability information 
Machine reliability can be expressed by two parameters: MTBF (Mean Time 
Between Failure) and MTTR (Mean Time to Repair).   

• Demand  
The system will be reconfigured so its new capacity will fulfill the new demand 
Dnew. 

 
3.3 Decision variables 
 
• Machine allocation  array 

M[i] = Number of machine being added to stage i, Li ≤≤1  
 

• Task Allocation Array 
siT =][ , s is an index of stage to which the task i is assigned, Ls ≤≤1 . 

 
3.4 Mathematical Model 
The following mathematical model is formulated to find the minimum number of 
machines to be added to the original system and the task allocation scheme for the 
reconfigured system to meet the new market demand. 

 ⎟
⎠

⎞
⎜
⎝

⎛
∑
=

L

i
iMMinimize

1
][  (1) 

Subject to 

(1)  Precedence constraints: 

][][],[ jTiTjiPre ≤⋅ , NjNi ,,2,1,,,2,1 …… =∀=∀  (2) 
 
For two tasks i and j, if task i must be performed before j ( 1],[ =jiPre ), it will be 
assigned to the same or a preceding stage as j. 
(2) Key characteristic constraints 

( ) 0],[]],[[
1

=−∏
=

NKC

k

jiKkiTS ,  RjNi ,,2,1,,,2,1 …… =∀=∀  (3) 

Eq. (3) means that if task i is assigned to stage s, its key characteristics must fall in the 
key characteristics of stage s. 
 
(3) Space constraints 
The number of machines added to each stage must not exceed the limit. 

LiiMiM ,...,2,1],max[][ =∀≤  (4) 
 
4 An Optimal Solution Approach Using Genetic Algorithm 
A Genetic Algorithm (GA) is a structured heuristic that searches for good solutions using 
a mechanism that mimics “survival of the fittest.” Mixed integer problems with complex 
functions and combinatorial explosion on feasible space, like a scalability planning 
problem, can be solved efficiently by GA [24]. 

In a GA, populations of solutions are randomly initiated first. These are represented in a 
string format and will be evaluated to provide some measure of their fitness. This initial 
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population is then propagated into future generations by applying genetic operators to its 
members. After a number of generations, the algorithm converges to the near-optimal 
solution to the problem [25]. 
4.1 String Presentation 

The first step of applying a GA is to represent a possible solution to the problem by the 
format of a string, namely encoding. A scalability scheme is encoded by an integer string 
which consists of two portions, corresponding to both an allocation scheme of 
manufacturing tasks, and system configuration. 

 

Fig. 5 gives examples of string representation of manufacturing tasks designed for tasl 
allocation. The length of each string is equal to the number of manufacturing tasks that 
need to be assigned to the manufacturing system. Each digit of the string contains two 
kinds of information: the position, gene, and the value, allele. The position indicates the 
sequential number of a task, and the value indicates the stage index which decides what 
stage the task will be assigned to. In this example, nine tasks are needed to complete a 
part in a system with four stages. They must be performed in the sequence depicted in 
Fig. 5a. An integer string with nine digits is used to present the nine tasks. For example, 
the first digit represents task 1 and the nth digit represents task n.  

To ensure all the constraints are satisfied when assigning tasks to stages, a task-to-stage 
index table, or T2S as shown in Fig. 5c, is first built by comparing the key task 
characteristic to the key stage characteristic. The stage number can then be found in the 
T2S table according to the task number (gene) and the stage index number (allele). For 
example, the value of Task 6 in the string is 2, signifying it will be allocated to stage T2S 
[6, 2] which is OP 3 in the manufacturing system. Table T2S also determines the value 
range of each allele Ai which is the number of available stages that this task i can be 
assigned to. In the example of Fig. 5, the range of gene 1 is A1= 1; the range of gene 2 is 
A2= 3; the range of gene 9 is A9 = 2 and so on.  

Task 
index 

Gene 
1 2 3 4 5 6 7 8 9 

A
lle

le
 

 

1 1 1 1 1 2 2 3 1 3 
2  2 2 2 4 3 4 3 4 
3  3  3  4  4  

 

c) Task-Stage Index Table T2S 

Fig. 5  String representation of task allocation 

d) Task allocation results 

OP1 

1 

3 

4 

5 

2 

6 

7 

8 

9 

OP2 OP3 OP4 

a) Task precedence tree 

1 3 1 2 1 2 1 3 2 

b) String representation  

1 2 3 4 5 6 7 8 9 
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During this decoding process, the following logic is used to ensure precedence 
constraints are not violated.  

⎩
⎨
⎧

=∀=∀≥++

=∀≥
=

jAlandjiPreiixlkjSTuntillkjST
jiPreiixkjSTifkjST

jx
,...,2,11),(,)),(),(2)),min(,(2

1),(,),(),(2),,(2
)( (5) 

Where, 
x(j) is the stage number that task j is to be assigned to; 
k is the allele value of task  j; 
T2S[j,k] is the stage number corresponding to allele k in task-to-stage index table; 
Pre(i,j)=1 indicates that task i is the parent task  j ; 
l is the smallest integer number that makes )(),(2 iSlkjST ≥+ , 1),(, =∀ jiPrefori  
 

 
Fig. 6. String representation for system reconfiguration 

An integer string representing system configuration, as shown in Fig. 6 is constructed in a 
way similar to Fig. 5. Assume a maximum of five machines are to be added to an original 
four-stage system to increase the system throughput for the new increased demand. The 
number of digits of the string is equal to the maximum number of machines to be added. 
The value of a digit represents the stage number a machine will be added to.  A value of 
each digit varies from 0 to the number of stages. A “0” means an extra machine is not 
needed. When the number of machines added to one stage exceeds the maximum number 
of machines allowed by the material handlers, it is set to be equal to the maximum 
number of machines. For example in Fig. 6, the value of the first digit of the string is 0, 
means this machine is not needed; the value of the second digit is ‘1”, means this 
machine will be added to stage 1; the value of the fifth digit is “4”, means this machine 
will be added to stage 4. 
The maximum number of machines is estimated as follows: 

0)/( Mm NLPserialDnewN −⋅=  (6) 
Where,  

L is the number of stages;  
0MN  is the total number of machines in the existing system;  

Dnew  is the new required system throughput; 
Pserial  is the system throughput of a serial line with L stages which can be  
calculated through line balancing. 
 

0 1 2 1 4 

M11 M21 M31 M41 
1 2 3 4 5 

M12 M22 M32 M42 

M13 

M14 

M23 M41 

String Representation Manufacturing System 
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4.2 Fitness (Objective) Function  
This is a function which measures the relative worth of the solution when applied to a 
decoded string. In our case, the following fitness function is used: 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<++

≥+

=

Σ
=

Σ
=

∑

∑

news

LS

i

news

L

i

DPwhenYttiM

DPwhenttiM
f

,][

,][

max
1

max
1  (7) 

Where, 

 ∑
=

L

i
iM

1

][  is total number of machines of the solution;  

maxst  is the maximum stage cycle time of the solution, namely the cycle time of the 
bottleneck stage;  
∑t  is total task time;  

P is the real throughput of the solution, which will be calculated using an ERC/RMS 
in-house developed software PAMS based on the analytical algorithm[26]; . 
Dnew is the new market demand;  
Y is a penalty constant when the solution cannot fulfill the productivity requirement. 

In equation (7), the first term is used to award the solution that yields the minimum 
number of machines. When two solutions give the same number of machines, the second 
term ∑tts /max (always < 1) is used to award the solution which yields the most balanced 
results. 

5. Case Study 

This section describes experimental analyses employed to examine and validate the 
proposed approach for scalability planning. The case selected to validate our approach is 
the rough machining process of an automotive V6 cylinder head provided by an industrial 
partner to the NSF Engineering Center for the Reconfigurable Manufacturing Systems. 
There are 141 features on the cylinder head, which could be grouped into 43 machining 
tasks, including milling, drilling, boring, spot-facing, and tapping. Because of its 
complexity, this component was ideal for the study as it permits many process design 
solutions for different system configurations.  The total time needed for the rough 
machining is 1019 seconds. The machines used for all stages are four-axis CNC 
machining centers which are capable of completing all the machining tasks. Fig.7a shows 
the part and Fig. 7b shows the machine configuration. MTBF and MTTR of the CNC 
machine are 193 minutes and 16.7minuts respectively. Fig. 8 shows a schematic diagram 
of the 43 machining tasks and the precedence tree used in this study. 
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Figure 7 Part and machine configuration 
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Figure 8 Task Precedence Tree 

5.1 Baseline Configurations 
Based on the requirements of the process plan of the part, the feasible setups are listed in 
Fig. 9. Different system configuration will need different combinations of these setups to 
produce the best processing results. Three system configurations, 3x4, 4x3 and 6x2, are 
used as the baselines to study scalability planning. 
 

 
Figure 9 Feasible setups 

Fig. 10 gives the three system configurations and their line balancing results. The letter 
under the OP number represents the setup number shown in Fig. 9. 
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Figure 10 Three configurations and their productivity 

 
5.2 Scalability Planning Results 
 
Assume a 4x3 configuration (Fig. 10b) is currently being used to fulfill a production 
demand of 30JPH (jobs per hour).  Also assume that a maximum of two machines can be 
added to each stage while the setup plan remains unchanged. When the new production 
demand changes to 35JPH, the proposed scalability planning algorithm found that 2 new 
machines need to be added to the system, as is shown in Fig. 11a. The rebalancing results 
per machine and per stage are shown in Fig. 11b and 11c, respectively.  After adding two 
machines system capacity increased to 36.6JPH. Compared to duplicating a four machine 
serial line, the new configuration only needs two new machines to fulfill the new 
production demand. 

 
Figure 11 Scalability planning example of increasing productivity by 5JPH 

 
Fig. 11 also shows that instead of being added to two different stages, the two machines 
are added to the same stage. This is because the selected setup plan and the machining 
tasks are not evenly distributed on each accessible face. Machines tend to be added to the 
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System throughput increase to 36.6 JPH after adding two machines to stage 3 
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stages with a setup which allow access to more tasks. This way system throught can be 
maximized. 

For each configuration, reconfigurations for adding up to 5 machines to the existing 
systems are calculated. Fig. 12, 13 and 14 show the reconfigurations for a 3 stage system, 
4 stage system and 6 stage system respectively. Again, Fig. 12 to 14 show that for a given 
case, machines are not evenly added to each stage. Some stages tend to require more 
machines than others to maintain the work load balance of the system. The number of 
machines and their locations to be added to the system can be optimized by the proposed 
method. 

 

 
Figure 12 Reconfigurations for scalability planning for a 3x4 system 

 
Figure 13 Reconfigurations for scalability planning for a 4x3 system 

 
 

A. P =35.9 B. P =39.1 

E. P =47.1 

Baseline 3x4 system productivity 
P0 =33.1 JPH. (All units are JPH) 

D. P =44.0 

C. P =41.8 

A. P =34.0 

Baseline 4x3 system productivity 
P0 =30.9 JPH. (All units are JPH) 

D. P =41.8 E. P =44.2 

B. P =36.6 
C. P =38.9 
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Figure 14 Reconfigurations for scalability planning for a 6x2 system 

 
 
From the cost-effective point of view, we suggest scalability planning be performed 
concurrently with the design of a new manufacturing system. This way, optimal locations 
where future machines should be installed can be identified in advance. Thus, material 
handling system can be optimized for future scalability planning to reduce the life-time 
investment cost. 
Table 1 summarizes the system productivity of each configuration and the new 
productivity when 1 to 5 machines are added to the existing systems. It can be seen that 
from Table 1 that system of 3x4 configuration gives both the largest system throughput 
and the largest throughput gain per machine. This is because both system reliability and 
system balance tend to decline with the increase of number of system stages. When the 
production demand increases for an existing system, Table 1, combined with Fig. 12 – 
14, is very convenient for helping to decide how many new machines are needed and 
where they should be added to.  

Table 1 System productivity of each configuration when new machines are added 

No. of Machines 
added 

System Throughput (JPH) Average throughput gain 
per machine 0 +1 +2 +3 +4 +5 

3x4 33.1 35.9 39.1 41.8 44.0 47.1 2.85 
4x3 30.9 34 36.6 38.9 41.8 44.2 2.80 
6x2 27.9 30.1 32.3 34.6 37.1 39.3 2.24 

 
 
6. Conclusion and Discussion 
 
This paper introduced the scalability concept and presented a systematic approach for 
scalability planning to add the exact capacity needed. This was done by simultaneously 
changing the system configuration and rebalancing the reconfigured system. An optimal 
solution approach, based on the Genetic Algorithm (GA), was developed for scalability 
planning with consideration of multiple constraints.  

The proposed approach was examined and validated through a real industrial case. 
Experimental results showed the proposed approach can address the scalability planning 

A. P =30.1 

P =58.35 

Baseline 6x2 system productivity 
P0 =27.9 JPH (all units are JPH) 

B. P =32.4 C. P =34.6 

D. P =37.1 
E. P =39.3 
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problem cost-effectively and efficiently. This paper suggests scalability planning should 
be performed concurrently with the design of a new manufacturing system. This way, the 
material handling system can be optimized for future scalability planning to reduce the 
investment cost. 

For the purpose of simplicity, this paper only used the total number of machines as the 
optimization objective. However, in real production, many other cost factors need to be 
taken in consideration. These include labor, tooling, utility, floor space, operating cost, 
material hander, etc [22]. Since a reconfiguration process needs shutting down the 
production system which will also cause extra cost for production loss in addition to the 
abovementioned costs. This must be included into the optimization model for scalability 
planning in order to determine the optimal reconfiguration timing and how much capacity 
to add.  
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