graphical procedure allows
exact analysis of a digital

control system
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Exact analysis of a digital speed-control system is possible by means of a
step-by-step procedure. A mathematical analysis with the aid of the z-trans-
form is not feasible, as the pulses from the encoder measuring the axis
position are unevenly spaced (except where the input frequency is constant
and the system in steady state); ordinarily, linearisation and the Laplace
transform are resorted to. More exact results are obtainable by means of a
correction factor. The proposed method provides conditions of non-instability.

A digital speed-control loop is shown schematically in
Fig. 1. The frequency of the feedback pulses tends to
equality with that of the reference, with the up-down
counter serving as equaliser; the pulse-number dif-
ference between the two channels is the position error,
fed to the motor through an amplifier. The measuring
element is a rotating encoder, generating K pulses per
revolution.

Fig. 1 Digital speed-control loop

In similar analogue systems, the reference is taken
as a voltage, but this is impracticable in the present case,
as the feedback would also have to have voltage dimen-
sions, and it would be impossible to formulate the trans-
fer function of the encoder. Accordingly, the reference
is taken as a frequency fr, and the feedback is then also
a frequency, fi. For motor speed w (in revolutions per
second) the transfer function of the encoder is:
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1t should be borne in mind that the process involves
linearisation, as the encoder yields discrete numbers,
whereas here its output is apparently continuous.

The counter receives frequencies and yields a number
(n). Recalling that

n=£fadt—§fgdt....................... ...... @

the transfer function of the counter is 1/s.
The transfer function of the d.—a. converter is K
(v/pulse), and that of the amplifier and the motor is:

K
1+ s7

where E is the converter output voltage.

The above data yield the overall transfer function for
the system, in this case a system of second order. A
digital system linearised as above will be referred to as
an ‘adjoint system’. (a.s.)

GE="26=

Introduction of correction factor

Fig. 2 compares the true encoder output (a) with the
approximation (b), obtained on the basis of the above
linearisation. The true output (nrs) is obtained by
subtracting a value 8 (r) from the approximate output
(ngv), as shown in Fig. 3:
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The true 3 (z) is shown in Fig. 4 as a solid line. The
increase may be assumed linear with satisfactory
accuracy, i.e., 8 (t)is a triangular wave with variable
base Ti. As Tyis unknown, it is proposed to determine
d(r) as a periodic triangular wave with the same
constant period 7 as the input frequency. (In that case,
T, is initially larger on starting at constant input
frequency, and tends to T at steady state). At steady
state 8 (r) is “the exact difference to be subtracted,
whereas at transient state it is a correction factor

Fig. 3 Control loop with 3(¢) correction -

Fig. 2 Comparison of true encoder output (a) with approximation (b)

yielding more exact results compared with the pre-
ceding method. It is worth noting that the mean-square
error of n triangular waves with base 7 equals that of a
single wave with base nT, which confirms the satis-
factory accuracy of the proposed correction factor. In
view of this, and of the fact that the approximate & (r)
(the correction factor) exceeds its true counterpart, the
true result by the digital system (d.s.) lies between that
obtained by the a.s. and the result obtained in this
section (much closer to the latter). : <
The Laplace transform of the correction factor is:

EIR 1/s e—sT ;
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Denoting the principal loop gain by G (s), we obtain:
(o) =W . 50 @)

1+ Gi(9)Ke 1+ Gi(s) K
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n(s)= ng (s) -+

1
1 + Gi1(s) Ke

n being the number of required positions on the
counter, according to which its number of stages is
determined.

- Comparison of methods
- The methods are compared for constant fw with period
7. By the a.s. system:
1 1

nis)=——8F—— -
1 4 Gi(s) Ke Ts®

According to (7):
1 1/s ‘ Ky

Bs) = = L T
I+ Gi(s)Ke | — eT " |4 Gy (s) K
-&T f 5

._'(_1__ Lz =_'__(_’ ,_+1)(9,
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For Gy (s) = Ki/s, we obtdin, respectively:
Ir T
A e B g ) YR e e I R 10
(r) K 1= ) (10)
where K — K Kg, and

n‘({) ={—?(l = e""“) BRIER S e R (11)

The table below lists 7 (r) values by three methods,
for K = 100 and fr — 400, at intervals of 7" in column
(&) according to Eq. (10), in column (b) according to
Eq. (11), and in column (c) according to the exact
stes-by-step method. Obviously, » i['\"r=ases by one
digit from point to point, and the ¢ata i column (c)
were obtained as means of (n — B Tand (n & 1) T,
except for the first pulse. Column i) 4sts the exact
counter readings at 1= (1 = nrT), and, it may be seen
that it is obtainable by rounding off the values in
column (b) upwards to the nearest integer.

Fig. 4 True and approximate errors
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The table confirms the relative closeness of the
results as described above.

Table 1 Comparison of methods

nR a b c d
1\ 0.0 Mol S 1
2 088 1-66 Ve BN BON SR D
3 157 218 212 3
4 212 2:59 2:50 3
5 2:53 2-90 2:88 3
B 2:85 314 3:02 4
7 311 333 3:22 4

Introduction of correction factor for
general input

The previous sections deal with a step-function input.
The general form of the input function is:

ny (s) = : (S e I s PR f S S st (12)
<

This is a Laplace transform for a sequence of
frequency-modulated pulses with 7 given by the sample
function # (r). By the same considerations as before, the

correction factor is
m

3 (s) = ;(L [nn (s) — Lz e""':] ............ (13)
i =1
and substitution of (12) and (13) into (7) yields
1 1
= — R S e T h 14
n(s) FRrrEy A [n (s) -+ s] (14)
The system output 4 (s) is
G (s) "
Gofe) e e |1y A o 15
() TS KE[” () S] (15)
and substitution of f (s) = uis) andnﬂs):fni) yields
5 A
G (s)
= e N 2 ol § (LR e, g 16
w ($) I =G (S)KEUR(S) +1] (16)

In other words, the maximum deviation from the true
result if the a.s. is used, is:

— Oy
1+ Gi(s) K
which is the response of the system to a unit impulse.

Awl(s)=

Conclusions .

Since addition of the response to the impulse in the
system output does not affect the nature of the latter, it
can be concluded from the preceding section that the
d.s. is not unstable if the a.s. is stable. There are,
however, cases in' which the d.s. may undergo a limit
cycle. ‘ 2
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