NUMERICAL CONTROL OF MACHINE TOOLS

Yoram Koren
Joseph Ben-Uri

KHANNA PUBLISHERS DELHI-6
NUMERICAL CONTROL
OF
MACHINE TOOLS

YORAM KOREN
Senior Lecturer,
Faculty of Mechanical Engineering
Technion—Israel Institute of Technology
AND
JOSEPH BEN-URI
Professor,
Faculty of Electrical Engineering
Technion—Israel Institute of Technology

1978

KHANNA PUBLISHERS
2-B, Nath Market, Nai Sarak,
DELHI - 110006
CONTENTS

CHAPTER	PAGES
1. **Introduction** | ... 1-24
 1.1. Definitions and Basic Information.
 1.2. Need and Advantages of N/C.
 1.3. Classification of N/C Systems.
 1.3.1. Point-to-Point and contouring.
 1.3.2. Analogue and digital control.
 1.3.3. Incremental and absolute systems.
 1.3.4. Open-loop and closed-loop systems.
 1.4.3. Plug-board control.
2. **Machine Tool and Case Studies** | ... 25-46
 2.1. General Construction Requirements. 2.1.1. Productivity and N/C.
 2.1.2. Quality of machine tools and the accuracy of the workpiece. 2.1.3. Thermal deformation. 2.1.4. Static and dynamic forces. 2.1.5. Special tool holders. 2.1.6. Economy of N/C.
 2.2. Metal Removing Machine Tools. 2.2.1. Sequence control. 2.2.2. Drilling. 2.2.3. Boring. 2.2.4. Punching. 2.2.5. Turning. 2.3. Miscellaneous Applications.
3. **Storage and Contouring Devices** | ... 47-52
 3.1. Logic Levels. 3.2. Time Delay and Shaping. 3.3. Binary Storage. 3.4. Registers. 3.5. Counters and Decoders.
4. **Devices of NC Systems** | ... 63-97
 4.1. Driving Devices. 4.1.1. Hydraulic systems. 4.1.2. DC motors. 4.1.3. Steping motor. 4.2. Feedback Devices. 4.2.1. Encoders. 4.2.2. Motor fringes digitizer. 4.2.3. Resolver. 4.2.4. Inductosyn. 4.2.5. Tachometer. 4.3. Digital-

5. **Data Processing Unit**

5’1. Data Reading. 5’1’1. Tape reader. 5’1’2. Reading circuits. 5’2. Distributors. 5’2’1. Tape formats. 5’2’2. Digital circuits. 5’3. Data Conversion. 5’3’1. BCD-to-binary conversion. 5’3’2. Binary-to-BCD conversion. 5’4. Interpolator. 5’4’1. Linear interpolator. 5’4’2. Circular interpolator. 5’4’3. Complete interpolator. 5’4’4. Parabolic interpolator.

6. **Control Loops**

7. **Numerical Control Loops**

8. Programming ... 233—287

8·1. Introduction. 8·2. Manual Programming. 8·2·1. Basic concepts. 8·2·2. Tape Forman. 8·2·3. Contour Programming—Example. 8·3. Computer programs. 8·3·1. General Information. 8·3·2. Post-processors. 8·3·3. APT language. 8·3·4. Other programming systems. 8·4. Quality Classification. 8·4·1. Characteristics of N/C systems. 8·4·2. Format Classification.

9. Computer Control and AC Systems ... 288—310

9·1. Computer Control Concepts. 9·2. DNC Systems. 9·3. CNC Systems. 9·4. Adaptive Control System. 9·4·1. ACO Systems. 9·4·2. ACC Systems. 9·5. The role of the Microprocessor in N/C. 9·5·1. The Microprocessor. 9·5·2. Microprocessor in N/C Equipment.
Numerical Control of Machine Tools
By Y. Koren and J. Ben-Uri (Delhi, India: Khanna, 1978, 310 pp.).

Reviewed by Thomas J. Higgins, Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706.

This review appeared in
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS,
VOL. SMC-10, NO. 3, MARCH 1980.

Numerical control (NC) as applied to machine tools covers three different fields: machine tool operation, design of control loops, and programming of the part being produced. The present book is unique insofar as it covers all three aspects of the subject within a single volume.

The book is divided into nine chapters covering the entire NC field, starting with conventional automatic machines and NC systems and progressing to more recent developments-DNC, CNC, and adaptive control. A comprehensive overview of the subject is provided, together with the necessary technical fundamentals for the design of NC systems.

This book can be used as a textbook for a one-semester advanced undergraduate course in a mechanical, electrical, or manufacturing engineering curriculum; or it can be used as a sourcebook for the practicing engineer.