The Global Manufacturing Revolution

PRODUCT-PROCESS-BUSINESS INTEGRATION AND RECONFIGURABLE SYSTEMS

Yoram Koren
Contents

Preface
xiii
Acknowledgments
xvii

1 **Globalization and Manufacturing Paradigms**
1.1 The Importance of Manufacturing to Society
1.2 The Basics of Manufacturing in Large Quantities
1.3 The 1990s: A Decade of Intensified Globalization
1.4 The Global Manufacturing Revolution
1.5 The Manufacturing Paradigm Model
1.6 Four Major Manufacturing Paradigms
1.7 Paradigm Transitions Over Time

2 **Product Invention Strategy**
2.1 Technology-Driven Products
2.2 Customer-Driven Products
2.3 Competition-Driven Products
2.4 Classification of Product Inventions
2.5 Product Development for Globalization
2.6 The Product Development Process

References
39
39
24
32

41

57
59
62

vii
CONTENTS

2.7 Head in the Sky, Feet on the Ground—Be a Dreamer on a Solid Foundation

- Problems 68
- References 69

3 Customized, Personalized and Reconfigurable Products

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction to Customization</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Design for Mass Customization</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Personalized Products</td>
<td>77</td>
</tr>
<tr>
<td>3.4</td>
<td>Product Modularity</td>
<td>88</td>
</tr>
<tr>
<td>3.5</td>
<td>Reconfigurable Products</td>
<td>96</td>
</tr>
<tr>
<td>3.6</td>
<td>Design of Customized and Reconfigurable Products</td>
<td>98</td>
</tr>
</tbody>
</table>

References

- Problems 101
- References 102

4 Mass Production and Lean Manufacturing

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The Principles of Mass Production</td>
<td>104</td>
</tr>
<tr>
<td>4.2</td>
<td>Supply and Demand</td>
<td>108</td>
</tr>
<tr>
<td>4.3</td>
<td>The Mathematical Model of Mass Production</td>
<td>110</td>
</tr>
<tr>
<td>4.4</td>
<td>Lean Production—Goals and Benefits</td>
<td>114</td>
</tr>
<tr>
<td>4.5</td>
<td>The Principles of Lean Production</td>
<td>117</td>
</tr>
</tbody>
</table>

References

- Problems 124
- References 125

5 Analysis of Mass Customization

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction to Mass Customization</td>
<td>126</td>
</tr>
<tr>
<td>5.2</td>
<td>Business Strategies of Mass Customization</td>
<td>129</td>
</tr>
<tr>
<td>5.3</td>
<td>Manufacturing System Characteristics</td>
<td>134</td>
</tr>
<tr>
<td>5.4</td>
<td>Economics of Product Variation</td>
<td>136</td>
</tr>
<tr>
<td>5.5</td>
<td>Mathematical Analysis of Mass Customization</td>
<td>142</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary</td>
<td>145</td>
</tr>
</tbody>
</table>

Problems

- References 146

6 Traditional Manufacturing Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Manufacturing Systems</td>
<td>148</td>
</tr>
<tr>
<td>6.2</td>
<td>Production of Complex Products</td>
<td>150</td>
</tr>
<tr>
<td>6.3</td>
<td>The State of Art at the End of the Twentieth Century</td>
<td>154</td>
</tr>
<tr>
<td>6.4</td>
<td>Assembly Systems</td>
<td>167</td>
</tr>
</tbody>
</table>
6.5 Industry Experience with FMS—A Survey
Problems
References

7 Economics of System Design
7.1 Life-Cycle Economics
7.2 Capacity Planning Strategies
7.3 Economics of System Configurations
7.4 The Economics of Buffers
7.5 Batch Production
7.6 Optimal Cutting Speeds
 Problems
 References

8 Reconfigurable Machines
8.1 The Rationale for Reconfigurable Machines
8.2 Characteristics and Principles of Reconfigurable Machines
8.3 Reconfigurable Machine Tools
8.4 Reconfigurable Fixtures
8.5 Reconfigurable Inspection Machines
8.6 Open-Architecture Controllers
 Problems
 References

9 Reconfigurable Manufacturing Systems
9.1 The Challenges of Globalization
9.2 RMS—A New Class of Systems
9.3 Characteristics and Principles of Reconfiguration
9.4 Integrated RMS Configurations
9.5 System Rapid Ramp-Up
9.6 Hexagonal RMS Configurations
 Problems
 References

10 System Configuration Analysis
10.1 Classification of Configurations
10.2 Comparing RMS with Cell Configurations
10.3 Calculating the Number of RMS Configurations
10.4 Example of System Design
10.5 Impact of Configuration on Performance Problems References 266 278 280

11 Business Models for Global Manufacturing Enterprises 281
11.1 Examples of Business Models 281
11.2 Business Model of Manufacturing Companies 285
11.3 Competitive Advantage 289
11.4 Strategic Resources 293
11.5 Supply Chains 297
11.6 Responsive Business Models for Global Opportunities 304
11.7 Product Life cycle Business Model Problems 307
 Case Study I—The Rise and Fail of FriendlyRobotics 310
 Case Study II—He Bet on Botox and Won 312
 References 313

12 IT-Based Enterprise Organizational Structure 315
12.1 Twentieth-Century Organizational Structure 316
12.2 Twenty-First Century IT-Based Organizational Structure 318
12.3 Information Transfer in Manufacturing Systems 323
12.4 IT-Based Maintenance of Large Systems 327
 Problems 330
 References 330

13 Enterprise Globalization Strategies 331
13.1 Why Enterprises Become Global 332
13.2 Countries of Potential New Markets 336
13.3 Product Design for Globalization 338
13.4 Location of Manufacturing Plants 340
13.5 Global Business Strategies 343
13.6 Global Strategic Alliances 349
 Problems 357
 References 358
14 The Twenty-first Century Global Manufacturing Enterprise 360

14.1 P—Productivity 361
14.2 R—Responsiveness and Reconfiguration 363
14.3 I—Integration of Product, Process, and Business 364
14.4 D—Design for the Global Manufacturing Paradigm 368
14.5 E—Empowerment of the Workforce 369
14.6 The Dilemma of Globalization 370
14.7 Where are Manufacturing Enterprises Headed? 375

References 380

Appendices 381

Appendix A: Computer Controlled Milling Machine in 1973 383
Appendix B: Three Types of Manufacturing Systems 384
Appendix C: Business Cycles 386
Appendix D: Term Project: Project Description and Requirements 386

Author Biography 391

Author Index 393

Subject Index 395
THE CONCRETE TOOLS
MANUFACTURING ENTERPRISES NEED TO THRIVE IN
TODAY'S GLOBAL ENVIRONMENT

For a manufacturing enterprise to succeed in this current volatile economic environment, a
revolution is needed in restructuring its three main components: product design, manufacturing, and business model. *The Global Manufacturing Revolution* is the first book
to focus on these issues. Based on the author's long-standing course work at the University
of Michigan, this unique volume proposes new technologies and new business strategies
that can increase an enterprise's speed of responsiveness to volatile markets, as well as
enhance the integration of its own engineering and business.

Introduced here are innovations to the entire manufacturing culture:

- An original approach to the analysis of manufacturing paradigms
- Suggested methods for developing creativity in product design
- A quantitative analysis of manufacturing system configurations
- A new manufacturing "reconfigurable" paradigm, in which the speed of
 responsiveness is the prime business goal
- An original approach to using information technology for workforce
 empowerment

The book also offers analysis and original models of previous manufacturing paradigms’
technical and business dimensions—including mass production and mass customization—in
order to fully explain the current revolution in global manufacturing enterprises. In addition,
200 original illustrations and pictures help to clarify the topics.

Globalization is creating both opportunities and challenges for companies that manufacture
durable goods. The tools, theories, and case studies in this volume will be invaluable to
engineers pursuing leadership careers in the manufacturing industry, as well as to leaders of
global enterprises and business students who are motivated to lead manufacturing enterprises
and ensure their growth.

YORAM KOREN is a member of the National Academy of Engineering and the Paul G. Goebel
Professor of Engineering in the Department of Mechanical Engineering at the University of
Michigan, as well as the Director of the NSF Engineering Research Center for Reconfigurable
Manufacturing Systems. He has won many awards, including, most recently, the Stephen S.
Attwood Award from the University of Michigan College of Engineering, 2008, and the Gold