


KOREN: DIGITAL LOOP FOR NUMERICAL CONTROL
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Fig. 1. Digital loop for numerical control of machine tools.

(DAC), a power amplifier, and a servo dc motor is shown in
Fig. 1.
One design method proposed for a similar type of digital

loop is based on minimizing the number of counter stages by
determining an optimal gain for each stage while keeping a
constant form factor in the armature [5]. Such a design, how-
ever, results in a loop gain which is varied discretely and conse-
quently depends upon the actual speed of the motor. This ap-
proach cannot be implemented in contouring systems, which
must operate linearly to maintain path accuracy [6] .

In the present study, a method for selecting the loop para-
meters to meet the accuracy requirements is proposed. It is
shown that the most important factors in designing a digital
loop for NC are the choice of the correct number of stages
in the counter and the appropriate gain of the amplifier.

II. Loop OPERATION
The principle of this digital loop is a comparison between

two sequences of pulses. The up-down counter compares the
frequency and the phase of the input pulses with the fre-
quency provided by the encoder and generates a number rep-
resenting the instantaneous position error in pulse units. This
number is converted by the DAC to a voltage which is ampli-
fied and applied to the motor. The motor rotates in the direc-
tion that reduces the error. If a constant input frequency is
applied, the encoder frequency in the steady-state is identical
to the input frequency except for a finite pulse and phase dif-
ference, which are necessary to generate the corrective error
voltage to rotate the motor.
A typical output signal of the counter at steady-state for a

constant speed is shown in Fig. 2. Generally, the position of
the counter at steady-state is not constant and its reading var-
ies between two successive values (e.g., between three and
four pulses). At high input frequencies, the motor smoothes
the error signal and follows the average value, but with low in-
put frequencies the motor moves in steps. When the input fre-
quency varies with time, the average number in the counter
also becomes a time dependent. In this case, the error signal is
not constant but depends upon how the input frequency varies.
The digital control loop illustrated in Fig. 1 can rotate the

motor in only one direction. In practice, a digital loop can ro-
tate the motor in both directions, for which additional circuits
are required [4].
An input circuit preceding the counter directs reference and

feedback pulse sequences. For one direction of rotation, the
count is increased by the reference and reduced by the feed-
back, and vice versa for reversed rotation. The input circuit
also eliminates a simultaneous appearance of pulses in both
channels, which would interfere with the counting. Informa-
tion about the actual direction of rotation is obtained from
the encoder which feeds two sequences of square waves in
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Fig. 2. The counter output for constant speed rotation.

quadrature into a direction sensing circuit. This provides a sig-
nal indicating the actual direction of rotation and ensures that
the loop is of a negative feedback type. By applying an appro-
priate bias voltage, the DAC output can be varied over a nega-
tive-to-positive voltage range to control the speed and direction
of rotation of the motor.

III. MATHEMATICAL ANALYSIS
The digital control loop can be analyzed by using Laplace

transform techniques. Each of the gain terms associated with
the blocks of Fig. 1 can be defined as follows:

Kc
Ka
Km
Kg
Ke

conversion gain of DAC (V/pulse),
amplifier voltage gain,
motor constant (rev/s/V),
gear ratio,
encoder gain (pulses/rev).

The counter converts frequencies to a pulse number and
phase difference, both being the integral of frequency. There-
fore, the counter functions as an integrator in the loop, and its
output E(s) is given by

E(s) = F(s)-KgKe W(S) (1 )s

where F is the input frequency to the loop.
The Laplace transformed speed of the motor for negligible

armature inductance is written as [7]

W(s) = Km V(s) - KtT(s)
I +sr (2)

where r is the mechanical time constant of the motor, which
is proportional to the total amount of inertia of the driven
system

T-KtJ.

The complete model of the loop is presented in Fig. 3. The
proportionally constant in (3) can be written

Kt = RKm /Ki (4)

213

k I I

(3)



214 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION, VOL. IECI-25, NO. 3, AUGUST 1978

By substituting (9) into (1), the Laplace transform of the
counter position becomes

(1 + srt)F(s) + fKtT,(s)E(s) = --f7IS2 +s+ K

For constant input frequency at the steady-state, the position
of the counter is

Fig. 3. Block diagram of the digital control loop.

where R is the armature resistance and K1 is the torque con-
stant. Most NC systems contain an additional internal loop
consisting of the motor and a tachogenerator as a second feed-
back device. This internal loop has a mathematical representa-
tion similar to the one in (2) [81 .

The forces, and consequently the torques, in most machining
operations are almost linearly on the feed rate. In addition,
there is a small torque in the motor due to friction losses in
the driving system. Therefore, for contouring applications, the
total torque is assumed to consist of a main torque for cut-
ting which is proportional to the motor speed and an additional
constant torque T. representing the losses

T(s) = K, W(s) + T.(s). (5)
The parameter K, depends on the material being machined
and the cutting geometry. Substituting (5) into (2), the
Laplace transformed velocity can be written

W(s) =(3Km V(s) - OKtT.(s)
1 +ST

where

IT = T

and is the fraction

(= 1/(1 + KtK,).

Combining (1) and (6) gives the closed-loop response

WV(3) = (KcKaKmF(S) - (KtsT,(s)1s2 + + (3K

where K is the open-loop gain

K = KcKaKmKgKe.

(6)

F KtTc
E

_

OK~K (16)

Clearly, Es in this equation cannot be an integer throughout
the whole speed interval. At those few speeds where it is an
integer, the motor input voltage is direct. Usually, the counter
output consists of a direct component and rectangular pulses
as was shown in Fig. 2.
The corresponding time responses of W and E, for a constant

input frequency, are found by an inverse Laplace transform of
(9) and (15)

W(t) = [1 - Q(t) sin (Wdt + P)I FlKgKe
- 2KStTCQ(t) sin &dt

E(t) = [1 - Q(t) sin (.)dt + qt)]F/IFK
+ (Fl o)Q(t) sin (')dt

+[1 - Q(t) sin ((Jdt + k)]JKtTc/K
where

C-d = N 2n
= arccos

Q(t) = exp (- cOn t)/xfi777

(17)

(18)

For a negligible Tc, equation (18) has a maximum at

(7) (dt = arctan (-Vi/Tr7) = IT - o
which recalls an overshoot of

(8) F 0Tf- 0)P= exp
2D(3K /V IT-

(19)

(9) The overshoot percentage of the counter versus the damping
factor is plotted in Fig. 4. This graph can be used to calculate
the maximum capacity of the up-down counter.

(10)
From (9), it is seen that the digital loop behaves as a second-
order servo system with the characteristic equation

S2 + 2¢wns + Wn2' = O (11)

where the damping factor is

= 1/(2 (KT)'= 1/(203Vf§k) (12)
and the natural frequency is

cn= V/KI7-T (13)

Eliminating r from (12) and (13) gives

=n
= 2(¢K. (14)

IV. DESIGN FOR CONSTANT INPUT FREQUENCY
Design of the digital control loop for an NC machine tool is

generally performed for given servo motor characteristics,
kinematic limitations of the machine tool, and precision re-

quirements for the machining process.
Selection of servo motors for NC machine tools is based

upon power and torque requirements for machines which fix
the maximum motor speed Wm and motor constant Km.
Likewise, the maximum allowable feed rate for each axis of
motion is dictated by kinematic considerations of the machine
tool. Since each reference pulse is equivalent to the position
resolution unit of the machine, this feed-rate limitation is
equivalent to limiting the reference pulse frequency. The posi-
tion resolution unit henceforth is called the basic length unit

T

(15)
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Fig. 4. The overshoot percentage of the counter versus damping factor.

In this case, the smallest value of for full loading condi-
tions is used.
The number of stages n of the up-down counter, and the

DAC (including one stage serving as a sign bit, indicating the
direction of rotation) is derived from

Emax< 2n- (26)

(BLU) and is equivalent to one pulse weight in length units.
The maximum reference frequency in pps is given by

Fm = FRM/60/BLU (20)

where FRM is the maximum feed rate in BLU per minute.
For example, a typical system with a maximum allowable

feed rate of 30 in/min and a BLU = 0.0001 in/pulse has a max-
imum reference frequency of 5000 pps according to (20).
At the maximum reference frequency, the axis moves at its

highest designed feed rate which corresponds to a certain
motor speed WO. The maximum motor speed Wtm will have to
be greater than Wo to ensure linear operation, to accomodate
overshoots, and to maintain a safety margin. Therefore, the
maximum feed rate will be achieved with a motor speed of Wo
rev/s related to Wm as

WO = awff (21)

In contouring systems, each control loop must operate lin-
early to maintain path accuracy. Condition (26) guarantees
that the counter will not become either full or empty, thus
avoiding nonlinear operation. For negligible friction torque T,
a simplified relationship is obtained

2n > 2Fm/ca3K. (27)

The DAC gin K, depends on its maximum output voltage
U, and the number of stages

Kc = /2n-i (28)

The final step in the desigp is to determine the amplifier gain
from (10) (as all other gains have been calculated already).
For full-range operation, the maximum effective input voltage
to the amplifier U. is related to U. as

where a is a constant which is typically about 0.8. The rela-
tionship between this speed and the maximum frequency is

Fm =KgKeWo. (22)
Another parameter which is given is the lead-screw pitch (LP)

given in mm/rev (SI units) or in threads per inch (TPI, in En-
glish units), i.e., LP = l/TPI. This parameter, together with
the resolution unit, gives the encoder gain

LP [pulsel
Ke BLU Lrev

Typical values in SI units are LP = 5 mm/rev and BLU =

0.01 mm/pulse, resulting Ke = 500 pulses/rev.
Since K, Fm, and WO are known, the gear ratio Kg is de-

termined from (22).
The open-loop gain K is calculated from (12) for a given

time constant r of the motor when coupled to the machine
table. The fraction P in (12) is obtained from (8). For the
purpose of gain design, the largest P (j3 = 1) should be con-
sidered. Designing for a damping factor of 0.707, the open-
loop gain is

K=
l

(24)
2-i

The next step is to determine the number of stages of the
up-down counter and the DAC, which depends upon the max-
imum values of the variables. The counter must be capable of
handling a motor speed of W11m The corresponding input fre-
quency, as derived from (21) and (22), is Fm /awhich, together
with (16), gives

Ua/U 2Emax/2 (29)

V. DESIGN EXAMPLE

This design procedure is illustrated for the digital loop of an
NC system which was applied for a large lathe.
The feed drives selected for the lathe were dc servo motors

rated at 120 lb in (13.6N m) nominal torque. Technical
specifications of the motor are given in Table 1. The lathe is

equipped With 10-mm/rev lead screws and a resolution of

BLU = 0.01 mm is required. The maxim'um required feed rate
is 1200 mm/min (-27 in/mmin) which corresponds to 2000 pps

according to (20).
From (23), it is concluded that an encoder of 1000 pulses/rev

is required. This frequency was achieved with an encoder of
only 250 cycles/rev by having two channels in quadrature.
Two channels are required for the direction sensing circuit,
and by using the falling and rising edges of both waves as pulse
sources, the encoder fundamental frequency is multiplied by a
factor of 4.
For the nominal recommended motor speed of 720 rev/min,

the required gear ratio from (22) is

Kg = (2000 X 60)/(720 X 1000) = 1
(30)

For designing the optimal gain according to (24) the open-
loop time constant r has to be found. Our specific system
contains an additional intemal velocity loop, consisting of the
amphfier (a PWM type), the motor, and a tachogenerator as a
second feedback device. A typical experimental response of

Pt
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TABLE I
TECHNICAL SPECIFICATION OF SERVO MOTOR [9]

Nominal Torque T 120 in-lb

Nominal Speed W0 720 rpm

Torque Constant K1 10.27 in-lb/amp

Voltage Constant Km 0.862 rad/sec/volt
Mech.Time Constant ITm 11.97 msec

Armature Resistance R 0.75 ohms

Maximum Speed Wm 1000 rpm

Peak Stall Torque Tp 1026 in-lb

Friction Torque Tf 5.0 in-lb

Moment of Inertia Jm 0.19 in-lb-sec2

W [rpm]

240_________

152------_

t [mse]
.jI ..,11--Q O0 20 SO 40

Fig. 5. Experimental open-loop response.
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Fig. 6. Closed-loop response with the open-loop gain as parameter.
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Fig. 7. Typical error at low velocity (K= 21 01).

plot is quite similar to the theoretical one given in Fig. 2, how-
ever, due to unconstant friction torques, more variations are
appearing around the average value of the error.

this loop is shown in Fig. 5. For simplicity, this time response
is treated like that of a first-order system. The characteristic
time constant at 63 percent (152 rev/min) of the steady-state
is r = 12 ms which, from (24), gives K = 42 s-.
The speed dependent torque coefficient in (5) can be esti-

mated by applying a full-load (120-in -lb) condition at the
nominal speed

K1 = 120 X 60/(720 X 2iT) = 1.59 [in - lb/rad/s].
At the normal operating speeds, the magnitude of the con-

stant torque is negligible compared with the rated torque.
Applying (4) with the data given in Table I gives Kt = 0.063

rad/s - in - lb and, consequently, the smallest ,3 is determined
from (8) yielding JB = 0.91. The factor a, the ratio between the
nominal and maximum speeds, is a- = 0.72. As a consequence,
the maximum position of the counter, at steady-state, as given
by (25) is Emax = 74, which in turn dictates an 8-bit counter
and an 8-bit DAC according to (26). Actually, such a DAC has
a larger capacity than required and, therefore, can accom-
modate unexpected overloads. A DAC with a maximum out-
put voltage of ±10 V was chosen yielding, as a consequence,
a gain of K. = 10/127. Note that the maximum effective
voltage of the amplifier as given from (29) is 5.8 V.
The design system has been constructed and tested on an NC

lathe. The experimental results, presented in Fig. 6, clearly
demonstrate that a practical optimal gain almost coincides
with the calculated one of K= 42 s-1. Lower gains yield
sluggish response while high gains cause oscillations.
Finally, the output of the DAC, converted to counter pulses,

was recorded at low speeds. A typical plot taken at 30 mm/min
(1.2 in/min) without cutting load is presented in Fig. 7. This

VI. CONCLUSIONS
A method is presented for designing a digital loop for NC

control. The digital loop has an up-down counter as the
equalizer and an encoder as the feedback device. The design
procedure permits the determination of the counter stages and
the various loop gains. The application of this method is illus-
trated using an NC lathe.

NOMENCLATURE

E
F
Fm
K
n

s

T
Tc
W
Wm

Wn

Average position of the counter.
Input frequency.
Maximum input frequency.
Open-loop gain.
Number of counter stages.
Laplace variable.
Torque.
Constant friction torque.
Speed of motor.
Maximum speed of motor.
Ratio between nominal and maximum speeds.
Mechanical time constant.
Damping factor.
Natural frequency.
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Analysis and Synthesis of Waveform Generators
in the Phase Plane

JUAN R. PIMENTEL

Abstract-A new class of waveform generators can be analyzed and
synthesized using the phase plane. The technique is based upon gener-
ating closed paths in the phase plane such that the variable values as a
function of time are the waveforms desired. Very accurate square, tri-
angle, sawtooth, and pulse waveforms are generated using these con-
cepts. Circuit implementations are proposed. Standard IC's containing
four operational amplifiers allow inexpensive construction of these
versatile oscillators, such that the component cost is competitive with
common generators. Experimental results were very good.

I. INTRODUCTION
T HE AVAILABILITY of low-cost high-performance opera-

tional amplifiers offers the possibility of efficiently
building waveform generators such as sine, square, triangle, saw-
tooth, or many other types desired [1], [2] By using phase-
plane concepts, a technique becomes available for designing
waveform generators. The quadrature oscillator [1] for gener-
ating sinewaves uses this concept, although very little attention
has been devoted to the phase-plane approach. Thus the idea,
while not entirely new, apparently has received little attention.
It is the purpose of this paper to generalize this concept and
use it to generate square, triangle, sawtooth, and pulse wave-
forms.
The phase plane is a powerful technique that is well known

for nonlinear differential equation and nonlinear control sys-
tem solutions [3], [4]. It allows one to observe the trajectory
relationship of the variables of a differential equation in the
phase plane. To obtain the phase-plane portrait of a particular
differential equation, a definition of the phase variables must
be made. Then, by using the differential equation, the slope
of the phase-plane trajectory is obtained. By computing the

Manuscript received June 21, 1977; revised January 9, 1978.
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values of this slope in the whole plane, the phase-plane trajec-
tory can be sketched.
The technique considered here uses a somewhat different ap-

proach. Instead of having an initial differential equation, one
first sketches a trajectory corresponding to the oscillation de-
sired. The next step is to write a differential equation which
will be implemented using electronic circuits.
The interest here is on periodic oscillations. A necessary

condition for this case is that the phase trajectory must be a
closed contour. By choosing the form of the closed path, arbi-
trary waveforms can be generated. The technique is limited
only by the difficulties in approximating the path in the phase
plane using physical components.

II. OSCILLATIONS IN THE PHASE PLANE
A. Sinewave Oscillator

First, the well-known quadrature oscillator for generating
sinewaves will be analyzed in the phase plane. For this case, a
linear second-order differential equation is used to generate
the waveforms desired. Such a differential equation is equiva-
lent to two first-order differential equations by defining suit-
able phase variables.
Consider the second-order differential equation
x +c&.2x = 0. (1)

By defining the phase variables xl = xx and x2 = x, equation
(1) becomes a set of first-order differential equations

X1 =CX2 X2--2= 1.(2
From (2), the slope of the phase trajectories in the phase plane
can be obtained as

dx2 X1

dx1 X2
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