


DIFFERENTIAL EQUATION MODEL
OF THE FLANK WEAR

YORAM KOREN*

ABSTRACT

A model of flank wear consisting of differential equations is presented. Such
a model is required as the first stage towards dynamic optimization of the cutting
process. Verification of the model is done by using experimental data available
from the literature.

NOMENCLATURE

A, B, Cy, C,, C, — constants of the differential equation

C — the constant of Taylor’s equation

n — the speed exponent in Taylor’s equation
T — tool life

v — cutting speed

w — width of flank wear

INTRODUCTION

The field of optimization and economics of machining has been discussed
frequently. The optimal cutting conditions depend on two functions: a mathematical
model which presents the machining process and a cost criterion. The most popular
criteria are the minimum cost (1, 2, 3, 4, 5, 6], the maximum production-rate [6, 7, 8],
and the maximum profit-rate criterion [9, 10]. In all these approaches, particularly
for an optimal cutting speed calculation, the mathematical model is unique: Taylor’s
equation. Since this equation is an algebraic one, using it as the mathematical model
leads to a static solution of the problem, namely working with a constant cutting
speed. "

However, it is not necessarily true that working with a constant optimal speed
will ensure the best results. It is known from the optimum control theory that the
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optimal solution results usually in a time-variable control input. In the metal cutting
case applying a variable cutting speed requires expensive control equipment and
therefore a discrete solution, by which each workpiece is machined with a different
cutting speed, can be considered as well. In order to apply either of these solutions
the differential equations which describe the process, must be known.

Some works have been done to develop mathematical models describing the
wear growth of the tool. There are simple models [11] on the oné hand and more
comprehensive models of flank-wear [12, 13] and crater wear [14] on the other
hand. However, none of these models consist of differential equations.

A comprehensive mathematical model for steel turning, which consists of
differential equations, has been presented in [I5]. This mode! shows the relation
between the process parameters (cutting speed, feed, forces, temperature, etc.) and
the width of the tool wear-land, W. Nevertheless, the model is too complicated
and contains a great number of indirectly measured parameters. However, its time
response can be approximated by the equation

W()=B— A+ Ae'" — Be™"'™ (1

where A and B depend on the tool and workpiece material and show only small
dependence upon the cutting conditions (speed and feed). They are assumed here
to be independent of the cutting speed. The parameters 7, and %, are strongly de-
pendent on the cutting conditions, and the relationship ¢ <1, holds during the
entire machining interval. For example, it has been found in [I5] that a typical
value of 7, is about 70 min, and of 7, is about 5 min.

It is well known that the wear characteristic comprises three stages:

(1) a short initial stage with high wear rate

(2) a near-linear stage

(3) a final high-rate stage, representing the tool failure
Eq. (1) describes mathematically the first and second stages of the wear. Substituting
the exponential expansion

2 3
Aet/tl — A=A [(t/‘t])-l- (t/;:) + (t/;:) + ]

into Eq. (1), and bearing in mind that 1, is relatively large, we see that B[l — exp(—¢/
{t2)] represents the initial stage, while a good approximation of the near-linear
stage is

W(t)~ B+ (At
This shows the validity of Eq. (1) as a wear model.

A reasonable interpretation of Eq. (1) is that the process obeys to a second-order
differential equation. In this presentation, this equation will be obtained and tested
by using wear curves from the available literature.

Obtaining a differential equation from a given closed form solution, i.e.,
Eq. (1), looks at the outset as an unusual approach. However, the reader should
notice that Eq. (1) is valid only for the initial condition W(0)=0 and a constant
cutting speed. A tool wear following a change in the cutting speed at time #,, will
be found by solving the differential equation subject to the initial conditions W(t,)
and w(t,).
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THE DIFFERENTIAL EQUATION

A differential equation which has the time response of Eq. (1) is the following:

LW+ — )W — W=A-B ‘ (2
with the initial conditions:
W(0)=0; w(0) = Aft, + B, 3

Eq. (2) is valid in the range 7> ¢ >0, where T is the tool life in minutes. The para-.
meters 1, and t, are functions of the cutting speed, v. In order to find simple rela-
tionships for t,(v) and 1,(v), the following assumption is made: '

0> T - @)

As will be shown later, assumption (4) holds for practical cutting conditions. Eq. (1)
can be approximated at 1 =T by: '

W,=W(T)=B— A+ Ae""™ 5)

By using the well-known Taylor’s equation
T =C n>1 . (6)

the following relationship can be obtained
tlen(wf—AB+A) =g )

Assuming that 4 and B are not functions of v, yiclds
T, =C/ ®)

The value of 1, is found through low speed cutting experiments. Eq. (1) can be
be approximated for small v and very small ¢ by

W(t) = (BJt)t ©)
It has been found in [15] that for small 1, the wear is proportional to v, and therefore
13=GCyfv (10)

Substituting Eqs. (8) and (10) into (2), yields
CiCooo (_c_,_ C,

n+1 v

v

)W—W=co an

where Cy= A — B. C,, Cy, C, and n are constants depending on the feed and depth
of the cut as well as on the tool and workpiece materials.
Eq. (11) can be rewritten more conveniently as

CiCyip+(Cp— Co" oy — "' W = Cop™™! (12)

Eq. (12) is the dynamic model which describes the flank wear process of the cutting
tool. The equation is a nonlinear one (the input variable is v) and has an unstable
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solution. Some simplification of Eq.(12) is permitted by using the relationship
C, < C,v"™ !, which practically holds.

The general solution of Eq. (12) can be obtained for a constant v. The obtaired
response can then be used, for example, when applying an optimal discrete speed
policy, namely, cutting of each workpiece with a different speed whose computation
is based on the actual wear and wear-rate.

Defining:

U = vn-—l

E, = exp(tvU/Cy)

E, = exp(—1v[Cy)
F =1/(Cy + GU)

The solution of Eq. (12) is given by the following equation:

W(t)= F(C,E, + CUE,) W, + C,Co(F|v) (E, — Es)Wo +
+ Cy[—1 + F(C,E, + C,UEy)] (13)

W, and i/, are the given initial conditions. If the cutting speed is changed during
te[0, T], the initial conditions of the next period are the final conditions of the
previous one. The final value of J is obtained from its corresponding equation;
the latter is derived by differentiating of Eq. (13)

W(t) = F(E,— EpvUW, + F(GUE, + C,E) o + F(E,— E)vUC,  (14)

Eq. (13) describes the general wear curve, while Eq. (1) is a particular case of
Eq. (13) and can be obtained by substitution of Eq. (3) into the latter (bearing in
mind that C,=A4 — B).

PRACTICAL EXAMPLES

The values of the various constants must be found from practical wear curves
which were obtained for two different cutting speeds at least. The results of such
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a one have been presented in [16] and were copied in Figure 1. The steel is SAE 1045,
the tool is P-25, the feed 0.14 mm/rev, and the depth of cut 1.5 mm. Curves produced
by Eq. (12) were fitted to the measured-points and the following values have been
calculated for the,constants:

n=2,67 Co = 2605 mm

A=27mm C,=3x10°

B=0.095 mm C,; =400 m

The value of C in Taylor’s equation, Eq. 6) has been calculated for W, =0.4
and v =200 m/min (7 =23 min) and is C=32 x 10%. For thls speed 7, =215 min
and 1, = 2 min, which proves assumption (4).

2

165 m/min ® 104 m/min

1x10, 2x10, 3x10,
Fig. 2

As a second practical example, consider the results of machining AISI 4340
steel with CX(AA) carbide tool, which were presented in [17] and ccpied in Figure 2.
Again, curves described by Eq. (11) were fitted and the constants were calculated:

n=1.70 Cp=5.47T mm
A=5.72 mm C,=28x107
B=10.25 mm C,=100m

As the last example, the data presented in [18] have been used. The workpiece
steel is AISI 1045, the tool is P-10, the feed 0.0104 ipr (0.264 mm/rev), and the
depth of cut 0.03 inch (0.752 mm). The data were obtained for four different cutting
speeds: 400, 600, 800, and 1000 fpm. The values of the various constants of the
differential equation are as follow :

n=3.0 C, = 0,998 inch (2.03 mm)
A=0.1 inch (2.54 mm) C,= 1.8 x 10 (5.1 x 10%)
B =0.002 inch (0.51 mm) C,=250ft. (76 m)

The solution of the differential equation with these constants is presented in
Figure 3. Notice that in the metric system speeds are measured in m/min and wear
in mm.
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Fig. 3
CONCLUSION

A mathematical model of the flank wear which consists of a second-order
differential equation has been suggested. The model permits prediction of tool life
in the course of dynamic optimization of the cutting process. The model has shown
a good adaptation with practical data, but which consists solely of cases with con-
stant cutting speed. Thus, further tests, in which the cutting speed will be changed
during the cutting operation, are required for a complete verification of this model.
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