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Estimation of the Absolute Position of Mobile 
Systems by an Optoelectronic Processor 

Liqiang Feng, Yeshaiahu Fainman, and Yoram Koren, Senior Member, IEEE 

Abstrucf- A method that determines the absolute position 
of a mobile system with a hybrid optoelectronic processor has 
been developed. Position estimates are based on an analysis of 
circular landmarks that are detected by a TV camera attached 
to the mobile system. The difference between the known shape 
of the landmark and its image provides the information needed 
to determine the absolute position of the mobile system. For 
robust operation, the parameters of the landmark image are 
extracted at high speeds using an optical processor that performs 
an optical Hough transform. The coordinates of the mobile system 
are computed from these parameters in a digital co-processor 
using fast algorithms. Different sources of position estimation 
errors have also been analyzed, and consequent algorithms to 
improve the navigation performance of the mobile system have 
been developed and evaluated by both computer simulation and 
experiments. 

I. INTRODUCTION 

HE NAVIGATION of mobile systems (e.g., mobile robots Till or automated guided vehicles 121) relies on the fast 
and accurate processing of measurements needed for extracting 
position coordinates and range information. Since incremental 
measuring devices on the mobile system, such as encoders, 
are prone to accumulating error over distance, an absolute 
position estimation method is necessary. This system should 
operate at high speed with moderate computing power, have 
little or no impact on the environment, be accurate and have 
high flexibility (i.e., easiness of changing trajectories). 

Various navigation systems have been developed, e.g., 
wire-guided systems [ 11, 131, computer vision-based systems 
[4]-[9], and active beacon-based systems [2], [lo]-[12]. 
These navigation systems have certain limitations: wire-guided 
systems are inflexible, computer vision-based systems require 
high computing power and are slow in operation, active 
beacon-based systems require the installation of sources or 
sensors in the environment and may have the problem of 
interference between multiple mobile systems. 

To overcome these limitations, many investigators have 
studied navigation systems based on known landmarks in the 
environment. Kabuka and Arenas 1131 suggested the use of 
circular landmarks with an associated bar code to give a 
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unique identity to each of the landmarks. Courtney, Magee 
and Agganval 151, as well as Fikui [14], used diamond- 
shaped landmarks and employed least-squares methods to 
improve the accuracy of measurements. Shyi, Lee, and Chen 
[ 151 studied navigation using triangular-shaped landmarks. 
The aforementioned methods are based on the geometric 
relationship between the landmark and its projected image 
detected by a camera mounted on the mobile system. A 
different approach was taken by Lee et al. [16] who used 
an indication post, which is a simple picture composed of 
different symbols and characters to provide information for the 
next task, e.g., the next direction of travel or distance of travel. 
Magee and Agganval 171 used a single sphere with horizontal 
and vertical calibration great circles as a landmark, Sugihara 
181 and Krotkov 191 used prestored map with landmarks and 
computer vision techniques to detect the edge of the landmark, 
and then determine the position and orientation of the robot. 

All of these approaches are based on digital computation 
in which the processing time at each location is on the 
order of seconds (0.5-20 s), depending on the complexity 
of the algorithms employed. Certainly, this computing speed 
is slow for the real-time operation of fast mobile systems. 
To increase the computing speed, we introduce a hybrid 
optoelectronic computing system for landmark navigation. The 
hybrid optoelectronic implementation allows us to achieve 
high processing speeds for real-time operation (at the frame 
rate of 1/30 s). 

To improve the accuracy and reliability of position estima- 
tion, data fusion techniques have been used. The basic idea 
is to use sensory information from different sensors (same 
kind or different kinds) to obtain better position estimation. 
Many researchers have worked on this subject. Wang 1171 
presented an uncertainty analysis about the location estimation, 
McKendall and Mintz [ 181 utilized statistical decision theory 
to formulate the problem of location data fusion, Luo et aZ. 
1191 developed a dynamic multisensor data fusion system 
for intelligent robots, Durrant-Whyte 1201 emphasized the 
sensor model and its role in multisensor integration, Flynn 
[21] studied the problem of combining sonar and infrared 
sensors for mobile robot navigation, Richardson and Marsh 
1221 studied problems of fusionability of different sensory data 
and desirability of sensor fusion, and Smith and Cheeseman 
[23] addressed the problem of error propagation in coordinate 
transformation. 

In our case, the position information comes from two 
sources: the wheel encoders that generate incremental position 
measurements and the landmark that provide absolute posi- 
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tion measurements. The position information obtained from 
the incremental measurements can be accurate over a short 
distance, but the error will accumulate over the distance. 
On the other hand, the absolute position measurements have 
bounded error, but their accuracy depends on the relative 
position between the robot and the landmark. Clearly, if we 
can combine the information from these two sources, we 
can obtain a better position estimate. In this paper, we will 
develop several data fusion algorithms for these two sources 
of sensory data by employing statistical modeling techniques 
and different statistical optimization criteria. 

In Section 11, we will discuss the operational principles of 
the proposed mobile system and describe the hybrid optoelec- 
tronic processing approach. In Section 111, we will discuss 
the positioning errors, and in Section IV, we will develop 
a number of algorithms that improve the performance of 
the mobile system. In Section V, we will provide computer 
simulations and experimental results. The final conclusions 
are given in Section VI. 

11. THE HYBRID OPTOELECTRONIC PROCESSOR 

In this section, we will introduce the navigation algorithm 
based on landmarks and describe its implementation using the 
hybrid optoelectronic processor. 

A. Operational Principles 

The navigation algorithm is based on the analysis of known 
landmarks (i.e., parametric curves such as lines and circles) 
that are artificially introduced or naturally exist in the envi- 
ronment. For example, the circles and the rectangular shapes 
on the spacecraft depicted in Fig. 1 are natural landmarks. The 
image of the landmark is detected by a TV camera mounted 
on the mobile system. The shape of this image depends on the 
relative orientation of the TV camera to the landmark. In this 
paper, we consider 2-D landmark navigation in which the axis 
of the camera lens lies in a plane perpendicular to the plane of 
the landmark and the center of the camera lens is at the same 
height as the center of the landmark. In this case, we need 
only two coordinates to determine the relative position of the 
mobile system with respect to the landmark (see Fig. 2). When 
a circle is used as a landmark, the TV image will be an ellipse. 
Four parameters (Le., two axes and the two coordinates of the 
center) are needed to determine the ellipse completely. 

In the case where the camera is pointing at the center of 
the circle, the relative coordinates of the mobile system to a 

plane of 
landmark 

Mobile system plane 

Fig. 3. Description of the relative spatial position of the mobile system and 
a landmark. 

circular landmark (see Fig. 3) are determined by 

(1) 
f r  - d f 2 T 2  - 4Az(r2 - R2)  

2A, R 
cosa = 

where r and a are the polar coordinates of the mobile robot 
system with respect to the landmark, A,  and A,  are the axes 
of the ellipse in the image plane (the coordinates of the ellipse 
center xo and yo are both zero), R is the radius of the circular 
landmark, and f is the focal length of the TV camera lens. 
The detailed derivation of (1) is given in Appendix I. In the 
general 2-D case (i.e., when the camera is not pointing at the 
center of the circle), the ellipse will be shifted, and r and Q 

will depend on f ,  R, A,, A,, and XO. 

B. Hybrid Optoelectronic Processor 

A block diagram of the hybrid optoelectronic processor is 
shown in Fig. 4. The image of the landmark (e.g., ellipse) is 
detected by a TV camera, transmitted to the optical processor 
where time-consuming operations and transformations are 
performed at high speed, and received there by the electronic- 
to-optical interface (i.e., a liquid crystal display device). The 
parameters of the ellipse are determined at very high speed 
by computing the Hough transform optically [24]. The output 
of the optical processor (i.e., the Hough transform parameter 
domain) is detected by the CCD arrays and is introduced to 
the digital electronic microprocessor. This microprocessor is 
used to analyze the output, determine the relative coordinates 
using (l), and provide control signals for navigation of the 
mobile system. 
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Fig. 4. Block diagram of the hybrid optoelectronic processor. 

The Hough transform (HT) is a space-variant transform that 
maps the input image plane to a parameter domain plane 
[24]. To detect the parameters of a straight line in normal 
parameterization, each point in the image plane (x, y) is 
transformed into a sinusoidal curve in the parameter domain 
according to 

p = xcos6 + ys in6  (2) 

where ( 6 ,  p)  are the coordinates of the HT parameter domain. 
Note that the parameters of a straight line in the image plane 
are represented by the coordinates of a point in the HT 
parameter domain. 

The amplitude distribution of the light in the parameter 
domain, F(8,  p),  is related to the amplitude distribution of 
the light in the input plane, f(x, y), according to 

F ( O ,  p)  = S S_, f(x, y ) ~ ( p  - x cos 6 - y sin 6)dxdy (3) 

where S(p - xcos6 - ysin6) is the point spread function 
(PSF) that corresponds to an input point (x,y) and the output 
sinusoidal curve p = x sin 8 + y cos 0. 

An ellipse in the image plane (x, y) may be described by 
the parametric equations 

W O 3  

-W 

x = ICO + A,  COS^ 
y = y o + A , s i n p  (4) 

where A, and A, are the two axes, xo and yo are the 
coordinates of the center of the ellipse, and ,B is a parameter 
(0 5 p 5 27r). Thus, A,,Ay,xO and yo are the four 
parameters that characterize the ellipse. Equation (2) can be 
rewritten for an ellipse as 

p = (20 + A, cos 0) cos 6 + (yo + A, sin p)  sin 6 .  (5) 

The amplitude distribution of light in the parameter domain 
(see (3)) consists of a superposition of curves described by (5) 
with /3 varying from 0 to 27r. The margins of the superposition 
of the sinusoidal curves in the parameter domain create an 
envelope. Since p is a function of both 6' and p for any given 
curve segment, the envelopes of the HT in the ( 6 , p )  domain 

0 100 200 

(b) 

Fig. 5. Extraction of the parameters of an ellipse using the Hough transform. 
(a) Input ellipse image. (b) Output image from the HT envelope, using a HT 
filter with an impulse response for the detection of a straight line in normal 
parameterization. 

will correspond to the extreme values obtained by varying p 
at each 6 ,  i.e., from the equation dp ldp  = 0. This results in 

(6) 
A, t an  6 

A X  
t a n p  = -. 

By substituting (6) into (9, we obtain two envelopes, one 
upper and one lower: 

The HT of the ellipse expressed by (4) yields an image 
in the parameter domain that is described by these sinusoidal 
envelopes, as shown in Fig. 5. 

The parameters of the ellipse can be extracted from the 
amplitude distribution of the light in the HT domain along two 
lines: 6 = 0' and 8 = 90' [24]. An appropriate substitution of 
6 into (7) yields the coordinates p of points K ,  L ,  P ,  and Q 
(shown in Fig. 5) which are given by (OO, zo + A,), ( O O ,  zo - 
A,), (go", yo + A,), and (go", yo - A,), respectively. These 
coordinates are detected and used to extract the parameters of 
the ellipse: 

To expand the 2-D case to the more general 3-D case, we 
have to determine one more parameter that corresponds to the 
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rotation of the ellipse. This can be accomplished by analyzing 
the HT plane along an additional line, 6' = constant. This 
additional measurement will allow us to determine the phase 
of the envelope in Fig. 5 ,  thus providing information on the 
fifth parameter, the rotation of the ellipse. 

There are several advantages for detecting the parameters 
of the image in the HT domain. First, since with our method 
we need to measure the coordinates only along a few lines (in 
the 2-D case, only two lines), there is no need to introduce 
the whole image into the computer as done in other landmark 
based methods (71-[9], [13]-[15]. This saves data transmission 
time and memory. Secondly, when part of the landmark 
is occluded (i.e., not visible), we can not use the method 
described in [13]. By contrast, in the HT domain, the resultant 
envelopes are built from the contributions of all the points on 
the ellipse, so even some points are missing in the image, there 
is still enough information in the HT domain that will allow 
us to extract the ellipse parameters. 

When implemented in a general purpose computer, the 
Hough transform is quite time and memory consuming, it is 
very difficult to achieve real time requirement without special 
parallel processor. Optical Hough transform takes the advan- 
tages of parallel processing and large memory capacity of the 
hologram to make the Hough transform practical for robot 
navigation application. Furthermore, the new approach has the 
potential to employ optical pattern recognition techniques to 
incorporate a finite number of landmarks of different shapes 
to increase the flexibility. For example, in the image domain, 
we can use optical pattern matching to distinguish different 
landmarks, and in the HT domain, we can use line detection 
to detect rectangular landmarks. 

111. ERROR ANALYSIS 

The precision of landmark-based navigation depends on 
errors caused by the measurement system and the mobile 
system. The limited resolution of the TV camera, the CCD 
arrays and the Hough transform filter, affects the measurement 
accuracy, and imperfections of the mechanical system, as 
well as environmental factors, cause deviations of the mobile 
system. These two kinds of errors are analyzed below. 

The measurement error is mainly determined by the digi- 
tization error, which occurs due to the limited resolution of 
the TV camera, the CCD arrays, and some optical devices 
(e.g., the liquid crystal display and the Hough transform filter). 
It is dominated by the lowest resolution of these devices. 
The minimum measurement error due to digitization can be 
determined from the size of the detected image and the detector 
resolution. For example, for a TV camera that permits the 
resolution images the size of 512x512 pixels, this error is on 
the order of 11512 = 0.002. But if the image does not occupy 
the full TV frame, the measurement error is larger. 

The measurement error is also affected by sensitivity func- 
tions that are defined as the ratio of the change in the position 
of the mobile system to the change in the image parame- 
ters, namely, drldA,, drldA,, daldA,, and daldA,. The 
sensitivity functions are not fixed, and they depend on the 
relative position of the mobile system to the landmark. The 

sensitivities measure how sensitive are the position estimation 
to the measurement error AA, and 4 A y .  In general, the 
mobile system's polar coordinates r and a are functions of 
the measurements A, and A,  (see (1)); therefore, the position 
error Ar  and A a  can be expressed by 

(9) 

where AA, and AA, are the measurement errors of the two 
axes of the ellipse and are determined by the digitization 
error. In real situations, the digitization error is a function of 
the relative position and the resolution of the devices. The 
coefficients, or sensitivities, e, e, R, and a 8'4, are 
functions of the relative position of the mobile system to the 
landmark. 

The sensitivities can be determined from (1) which may be 
rewritten in the following form: 

f Rr cos a 
r2 - R2 sin2 a 

A, = 

In practice, the distance between the mobile system and the 
landmark r is much larger than the radius of the circular 
landmark R, so the previous equations can be approximated as 

f R cos a 
r 

A ,  zz ~ 

We can now solve for r and a: 

f R  
AY 

r = -  

A,  
AY 

a = arccos - 

The sensitivity functions of the relative position of the 
mobile system with respect to the landmark are derived from 
(11); after substituting (lo), we obtain 

dr 
8 - 4  
- = o  
dr r2 

r - d a  
dA, fRsina 
da - r c o s a  
dA, f R s i n a '  

- - -___ 

- _ _ _ _  - 

The approximated positioning errors are obtained by sub- 
stituting (12) into (9): 

r2 
f R  

Ar = --AA, 

AA,. (13) AQ = -___ AA,+- f R sin a fRsina 
r cos a 
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TABLE I 

Real Measured Calculated Error 
r a -4, -Av rnl ant A r J r n ,  Aafn,,, 

4000 15 56 75 4028 10.86 0.7% -27.6% 
4000 45 41 75 4028 43.62 0.7% -3.1% 
4000 75 15 75 4028 72.93 0.7% -2.76% 
2000 45 82 151 2003 45.47 0.2% 1.04% 

From (12), we can observe that all the sensitivity functions 
increase with an increase in r. We can also see that if r is 
kept constant, the sensitivities with respect to a decrease with 
an increase in a, and the sensitivities with respect to r do not 
depend on a. 

Assuming we have constant digitization errors AA, and 
AA,, we can observe that for a mobile system moving 
away from the landmark under a certain orientation, the 
measurement errors Ar and Aa increase due to the increase in 
r .  If we keep a fixed distance between the mobile system and 
the landmark, but change the angle of view a, the measurement 
error Aa decreases with the increase in a,  and Ar does not 
change. In some special cases, when cy = O o ,  there is no 
information on n; therefore, the error in a tends to infinity, 
i.e., Aa + m. When (Y goes near 90°, from (lo), we can 
see that A,  + 0, the measurement error becomes significant. 
When r + m, the errors in both r and a tend to infinity. 

Simple experiments have been conducted to evaluate the 
effects of digitization and sensitivity on the accuracy of 
position measurements. The results are summarized in the 
Table I. The experimental results in Table I are consistent with 
the analysis discussed previously. 

To improve the measurement accuracy, we will introduce a 
statistical model for the digitization error by assuming that the 
image parameters are random variables that possess a normal 
distribution. The probability model will allow us to employ 
statistical techniques to improve the navigation of the mobile 
system. 

The variances of the position estimates are functions of the 
digitization error and the sensitivity. The errors in determining 
the coordinates of the mobile system depend on the digitization 
error and the sensitivity, according to (9). By assuming that A,  
and A, are normally distributed independent random variables, 
we then know the linear combination of Gaussian variables is 
also a Gaussian random variable, and the variances of the 
coordinates are related to the variances of A,  and A,  by [25] 

where a i z  and a iv  are the variances of the two axes of the 
ellipse, and a: and O: are the variances of the coordinates of 
the mobile system. 

The positioning accuracy of mobile systems is affected by 
factors of the mobile system and the environment. In many 
mobile systems only indirect incremental position transducers 

are employed such as incremental encoders in wheeled mobile 
robots. In these cases, position errors exist due to the different 
diameters of the wheels, wheel misalignment and asymmetric 
vehicle loads, as well as the floor conditions that may be 
different for different wheels [26], [27]. Since the positioning 
errors caused by these factors can not be detected by the 
encoders, the errors accumulate over the distance. Obviously, 
an absolute position measuring method becomes essential for 
reliable navigation. 

Iv .  ALGORITHMS FOR IMPROVED PERFORMANCE 

The simplest way to combine absolute and incremental 
measurements, is to use last absolute measurement at point i 
as a reference and add to it the incremental readings between 
point i and i + 1, where the next absolute measurement is 
taken. This method, however, is very sensitive to errors in the 
absolute measurement at point i. A more accurate system may 
be one in which information from previous measurements is 
also utilized. In this section, we will develop algorithms that 
use the present and previous measurements of the landmark as 
well as the encoder readings of the mobile system to improve 
the navigation accuracy. 

When the mobile system is instructed to move, measure- 
ments are taken at different points along the trajectory. At 
each point, a new estimate of the current position is obtained 
based on the new as well as previous measurements. Each 
previous measurement is projected to the present vehicle 
location according toe following equation: 

] = a  

where 2: is the landmark measurement at point i ,  Ax:" is 
the increment from point j to point j - 1, which is obtained 
from the readings of the encoders, and z; is the projection to 
point n from the measurement at point i .  In our discussion, 2; 

is used as a general variable, and it represents either r or a. 
In developing the navigation algorithms, we will consider 

two errors, the landmark measurement error and the mobile 
system error. The measurement error is caused by the limited 
resolution of the devices and is sensitive to the location of the 
mobile system (see (13)). In order to increase the robustness 
and positioning accuracy of the mobile system, we will use 
algorithms based on a weighted average method [28]: 

where zn is the new estimate of the current position at point 
n, xy is the predicted point n position based on measurement 
at point i according to (15), and wi is the weight that gives the 
optimal estimate (see Section IV-A). The weighted average is 
used to fuse the information from both the new measurement 
and the projections from previous measurements ((15)) to get a 
better position estimation. Equation (16) can be also rewritten 
in the recursive form: 
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where Z:-l is the projection from the last estimate, i.e., 
p--l = 3-1 + Ax:-l and is the new measurement at 
point i. 

To counteract for the mobile system error, we must realize 
that the errors caused by the imperfection of the mobile system 
itself and the environmental factors accumulate over distance. 
In order to avoid the buildup of large errors, we use a moving 
window to include only the most recent measurements into the 
weighted average process. In Section IV-B, we will discuss the 
situation where both measurement and mobile system errors 
present. 

A. Compensating for the Measurement Error due to Sensitivity 

If the mobile system errors are small, the major source of er- 
ror will be the measurement error. We will develop algorithms 
based on the weighted average of (16) to compensate for the 
measurement error based on different optimization criteria. 

Algorithm with Weights Based on Sensitivity: The sensitiv- 
ity of measuring the landmark parameters depends on the 
location of the mobile system, as shown in (11). In general, 
the accuracy of the measurement decreases with an increase 
in sensitivity, i.e., a measurement obtained in a low sensitivity 
region is more reliable and should be assigned a larger weight. 
From (9), we can see that if we assume a constant digitization 
error, the measurement error depends only on sensitivities. 
Thus, selecting the weights of the weighted average based 
on sensitivities might be an appropriate approach (under the 
assumption of a constant digitization error, an assumption that 
is hard to justify). 

The sensitivities given in (11) are used as the weights in 
(16). Since (da/dA,) = 0 and (da/dA,) 2 (da/dA,),  the 
dominant sensitivity factors become d r / d A ,  and da/dA,. 
We take w, = l / (da /dA,)  and w, = l /(dr/dA,),  and the 
estimated location of the mobile system is calculated using 
the following equations: 

where Fn and CYn are the estimated distance and the orientation 
of the mobile system, respectively; w,T and w: are the weights 
at point i ,  and rr and ay are the projections for the coordinates 
at point n, which are defined by equations similar to (15). 

Equation (18) can be expressed in the following recursive 
form: 

where r," and a; are the new measurements, and ?=E-l and 
= 

p - 1  + AT,"-, and = an-' + AaEP1. An evaluation 
of this algorithm and comparisons to those presented in the 
following subsection are given in Section V. 

are the projections from the last estimate, i.e, 

Minimizing the Variance of the New Estimate: The algorithm 
described by (18) is not based on an optimization procedure. 
In contrast, our second algorithm is based on minimizing the 
variance of the new estimate. Assuming that xr in (16) are 
independent random variables, we can determine the variance 
of every new estimate by [28]: 

where a$ is the variance of the projection of T from point 
i ,  and C& is the variance of the new estimate of the distance 
at point n. 

In order to minimize the variance, we must satisfy the 
relation 

do$ 
dW,. 
- = 0. 

Substituting (20) into (21) and solving the resultant equa- 
tion, we obtain the optimum weights [28]: 

1 

r: 

w; x 2. 
CT 

A similar relation can be obtained for the second coordinate 
a: wp cx l / ( ~ : ~ ) .  This result can also be obtained by applying 
a Kalman filte; [30]. 
Minimizing the Mean Square Error of the New Estimate: The 
third algorithm is based on minimizing the mean square error 
of the new estimate. The mean square error at point n can be 
expressed by 

n 

2 = 1  

where f" is the estimate for point n given by (16), and ry is 
the projection to point n from point i .  To minimize the error, 
we have to satisfy the following equation: 

- = 0  
d J  

aW,. 
(24) 

where i = 1,. . . , n - 1. Substituting (23) and (16) into (24), 
we obtain 

n 

a=1 

where j = 1 , 2 , .  . . , k -  1, k +  1,. . . , n-  1. Assuming a certain 
value for the kth weight, wi, we can rewrite the last equation 
as 

By solving this system of linear equations at each point, we 
find the optimal weights for minimizing the mean square error 
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of the new estimate at this point. To avoid the trivial solution 
of this homogeneous linear system, we must first pick one 
weight. The weight in the highest sensitivity region is assigned 
a weight of 1, or w; = 1. The derivation of (26) is given in 
Appendix 11. 

Considering the real-time requirements of the navigation 
problem, we adopt the recursive least-squares algorithm for 
(26) [30], which solves the least-squares problem approxi- 
mately by using a recursive relation at each point: 

where a:, is the variance of the new estimate, 0.2:: is the 
variance of the new measurement, a$-, is the variance of the 
estimate at the previous position, and is the variance 
of the increment Ar,"-,. To minimize the variance of the new 
estimate, we compute the derivative of a:, with respect to 
W L - ~  using (29): 

where r," is the new measurement, .r;,"-l is the projection from 
the last estimate, F n  is the new estimate, a; is the weight, and 
P, is a variable gain, which can start with an arbitrary positive 
value. Equations similar to (27) can be obtained for a. 

B. Compensating for Both Measurement and Mobile System 
Errors 

In the three algorithms discussed in Section IV-A, we 
used the previous absolute measurements and the encoder 
readings to estimate the new positions. However, as discussed 
in Section 111-B, there could be a large accumulation of errors 
in the encoder readings due to the mobile system errors (e.g., 
different sized tire, slippery floors, or misaligned wheels). 
To reduce the effect of incremental error accumulation, we 
adopted the strategy of introducing a moving window. With 
this strategy, the effect of the previous measurements on the 
current position estimate diminishes over the distance. In this 
study, we use the weighted average of the current measurement 
and the projected estimate from the last measurement. 

We will use a weighted average for two successive mea- 
surements and select the weights such that the resultant new 
estimate will have the minimum variance. If we assume that 
the random variables r and AT are independent, we have 

959 

We solve (30) for W L - ~  and obtain 

By substituting (31) into (28) and (29), we obtain 

(a&l+ cir;-l  

a&, + + 0:; 
Is;?? = 

(a$-1 + UA,;-~)~," 2 + a$(Fn-' + 
p = . (33) + air;-l + a$ 

We can see from (33) that the weights are still inversely 
proportional to the variance, but when the new measurement is 
more accurate (i.e., a:, < o;n-l +~i~;-~), a larger weight is 
obtained for the new measurement. Otherwise, a larger weight 
is obtained for the projection from the last estimate. 

= 0, ( k  = 0,1 , .  . . , n), 
all the measurements are of the same accuracy, a2h, ( k  = 
0,1 ,  . . . , n), and the best estimate should be the arithmetic 
average. We can show that under these assumptions, (33) 
indeed will reduce to the simple arithmetic average. 

In the ideal situation, i.e., a i r n  
n- I  

'k 

C.  The Computational Complexity of the Algorithms 

The proposed algorithm employs the optical processing to 
implement the time consuming Hough transform, then uses 
a digital computer to compute the position and orientation 
and enhance the precision with the aid of data fusion al- 
gorithms. Without these algorithms, the computational time 
is at the order of a few microseconds. All the data fusion 
algorithms developed in Section IV are recursive weighted 
average algorithms with very short computational cycles. Even 
the most complicated algorithm introduced in Section IV-B 
requires only the calculation of the coordinates r and a from 
(l), variances of the coordinates T and cy from (12) and (14), 
and the estimated coordinates F and d from (32) and (33). 
So the numerical calculations required at each step are rather 
simple (take less than 1 ms on a 386 computer). Therefore 
the processing time required at each step is dominated by 
the video frame rate which is about 30 ms. While the digital 
implementation of the same scheme will take much longer (in 
the order of seconds). 

v. SIMULATIONS AND EXPERIMENTAL RESULTS 

We have performed computer simulations and experimental 
evaluations of the proposed hybrid optoelectronic navigation 
system using the different algorithms introduced in Section IV. 
The results are summarized below. 

A .  Computer Simulations 
The objective of this computer simulation is to verify the 

effectiveness of the algorithm developed in Section IV-B when 
both measurement and mobile system errors are present. In 
the simulation, the mobile system moves along a straight path 
with incremental steps of 200 mm. Measurements are taken at 
each step (12 steps total). At the target point, a new estimate 
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Fig. 6. Typical output from the optical processor. 

of the current position is obtained using the new as well as 
the previous measurements with the weighting factors of the 
different algorithms. The data from the encoders of the mobile 
system are also used. The final correction is then made toward 
the target based on the new position estimation. 

We introduced a mobile system error of 10% for two 
simulation cases: 1) a mobile system error occurs only at the 
second step; and 2) a mobile system error occurs only at the 
10th step, where the total number of steps is 12. We have 
chosen these two cases to demonstrate the effectiveness of 
the algorithm in controlling errors that occur at the beginning 
of the route and at its end. The results of the computer 
simulation for the two cases are summarized in Fig. 7(a) and 
(b), respectively. In each case, errors at the target point are 
compared for three navigation strategies: I )  motion based on 
the new measurement; 2) motion based on the algorithm that 
minimizes the variance of the new estimate without a moving 
window; and 3) motion based on the algorithm in 2) but using 
a moving window. 

From the results in Fig. 7, we observe that 1) the algorithm 
based on minimizing the variance of the new estimate with 
a moving window gives the best performance; 2) the mobile 
system error has a significant effect on the position estimation; 
and 3) a moving window is an effective way of compensating 
for error accumulation. 

B. Experimental Evaluation 

We have also conducted experiments to evaluate the differ- 
ent position estimation algorithms developed in Section IV-A. 
In our experiments, a mobile TV camera (with a resolution 
of 256x256 and a lens focal length of f = 16") was used 
at each measurement point on a desired trajectory to acquire 
an image of a circular landmark of radius R = 107 mm. The 
camera usually recorded an image of an ellipse, which was 
sent via a TV communication link to the optical processor 
(see Fig. 4). The TV image of the ellipse was displayed on a 
liquid crystal device, and was read out by a laser beam. The 
coherent image of the ellipse was transformed optically by the 
HT filter, and the optical output in the parameter domain was 
detected by another TV camera interfaced to a microcomputer 

45 a 

4 5  a 

(b) 

Fig. 7. Comparisons of computer simulations of the navigation errors for 
different correction criteria: (a) mobile system gives an error only at the second 
step; (b) mobile system gives an error only at the 10th step, where the total 
number of steps is 12. In each plot, from left to right, motion is based 1) only 
on the new measurement; 2) on minimizing the variance of the new estimate 
without using the forgetting factor; and 3) on minimizing the variance of the 
new estimate using the forgetting factor. 

via an Image-100 image-processing board. A typical picture 
of the output is shown in Fig. 6. The parameters of the ellipse 
were determined from the detected image of the parameter 
domain along the two columns of 0 = 0" and 0 = 90" 
(see (8)). This computation was performed at very high speed, 
since it only involves very simple algorithm applied to a small 
number of points along the image in the parameter domain. 
The parameters of the ellipse were then used to determine the 
real position of the mobile system by employing the different 
algorithms without introducing any mobile system errors. 

There are several error sources involved in our experiments: 
camera positioning errors (e.g., the positioning accuracy of the 
mobile TV camera is on the order of 1 mm), limited resolution 
of the Hough transform filter (128x 128), parameter measuring 
errors (e.g., digitization error), and calibration errors. 

The path taken in our experiment is a straight line path 
from (990, 2196) to (1705, 1475). We have plotted the position 
estimation error of two points on the trajectory to compare the 
three algorithms. The results from computer simulation and 
experiment are represented in Fig. 8(a) and (b), respectively, 
along with the results of the simple measurement, From Fig. 
8, we can observe that 1) the algorithm based on minimizing 
the variance of the new estimate gives the best performance, 
and 2) all algorithms give a more accurate position estimate 



FENG er al.: ESTIMATION OF ABSOLUTE POSITION OF MOBILE SYSTEMS 961 

Point 1 Point 2 

(a) 

Point1 Point 2 

(b) 

Fig. 8. Comparisons of error from the real position for different position 
estimation algorithms. (a) Computer simulation. (b) Experiment. At each 
point, from left to right, the algorithms are based on 1) simple measurement; 
2) weighted average based on sensitivity; 3) least-squares method; and 4) 
minimizing the variance of the new estimate. 

than the measurement. 

C. Discussion of the Results 
The computer simulation and the experimental results were 

found to be consistent. In the case of selecting the weights 
by minimizing the variance of the new estimate, we have 
considered both the sensitivity and the digitization errors by 
assuming a certain statistical error model. In most cases, it 
gives the best result. A moving window is introduced to 
compensate for the mob,ile system errors. 

From the results in Figs. 7 and 8, we can conclude the 
following: 

Each of the three navigation algorithms improve the 
navigation performance of the mobile system. This im- 
provement will be even further enhanced when the 
distance traveled is increased. 
The algorithm based on minimizing the variance of the 
new estimate with a moving window performs the best 
in the presence of both measurement and mobile system 
errors. 
The algorithm based on minimizing the variance of the 
new estimate is the most efficient in compensating for 
measurement errors. 

4) The experimental results are mostly consistent with the 
computer simulation. 

5) The computer simulation and the experimental results 
show that the performances of the mobile system depend 
on the particular region passed by the mobile system as 
well as the locations where the measurements are made. 

VI. CONCLUSION 
A mobile system with a hybrid optoelectronic processor 

was studied. This processor combines the speed of optical 
image processing with the accuracy of digital computing 
to execute real-time navigation with sufficient accuracy. We 
analyzed different error sources that affect the navigation of 
the mobile system. To assure robust and accurate operation 
of the mobile system, we developed several algorithms based 
on different optimization criteria. Computer simulations and 
experiments were conducted to evaluate the performance of 
different algorithms. The results of the computer simulation 
and the experiments are consistent. The most accurate nav- 
igation performance of the mobile system is obtained with 
the algorithm based on minimizing the variance of the new 
estimaie with a moving window. 

APPENDIX I 
THE RELATIONSHIP BETWEEN LANDMARK IMAGE 

PARAMETERS AND POSITIONS 

In this Appendix, we derive the relationship between the 
circular landmark image parameters (i.e., the ellipse axes A,  
and A,)  and the relative positions (r  and a )  in the 2-D case. 

From Fig. 9(a), since triangles A O D E  and AOC,D, are 
similar, we obtain C,D,/f = Rcosa/(r + Rsina); A O F B  
is similar to AOC,B,, thus C,B,/f = Rcosa/(r - Rsincu). 
Since A, = C,D, + C,B,/2, we obtain 

f rR cos Q 

r2 - R2 sin2 a 
A,  = (34) 

The AOGH and AOGiH; of Fig. 9(b) are similar, so that 
( 2 A y l . f )  = (2R/r) ,  or 

f R  A ,  = 7. 
From (34) and (39 ,  we get (1). 

(35) 

APPENDIX I1 

LEAST-SQUARE ERRORS 
DEVELOPMENT OF THE ALGORITHM BASED ON 

The mean square error can be expressed as 

To determine the minimum, we should set the derivative of 
J with respect to wi to zero: 

- = o  35 
8 W i  
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Fig. 9. 

that is 
n E(.; - .F)w,T = 0. 

i=l 
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