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Flank Wear Model of Cutting Tools 
Using Control Theory 
A model of the flank wear of cutting tools is developed by using linear control theory. The 
flank wear is assumed to consist of a mechanically activated and a thermally activated 
component. The wear process is mathematically treated as a feedback process, whereby 
the progressive wear raises the cutting forces and temperature thereby increasing the 
thermally activated wear-rate, and contributes to the mechanically activated wear. A 
mathematical expression for the flank wear growth is derived and shown to be consistent 
with experimental results. The experimental data is fitted to the wear model for calculat
ing the mechanical wear coefficient and activation energy for the thermally activated 
wear. The model yielded a new tool-life equation which is valid over a wider range of speed 
than Taylor tool-life equation. 

I n t r o d u c t i o n 

The determination of optimal cutting conditions in machining 
operations requires a mathematical relationship between the tool life 
and machining parameters. For this purpose a Taylor equation is 
widely used in which the tool life is related to the cutting speed by a 
power function relationship. This type of relationship is based upon 
empirical results rather than upon a physical model of the wear pro
cess. Therefore, it is not surprising that there are many cases in which 
the Taylor equation does not appear to be valid [l],1 and accelerated 
tool life testing based on the Taylor equation can lead to large errors 
in tool life prediction [2]. Better results might be obtained by directly 
relating the tool life to a model of the wear land growth [3-5]. Our 
approach along this line [5] has been to use a physical wear model 
which is based on a feedback relationship. The present study involves 
modifications of this model, yielding consequently a mathematical 
expression for the flank wear growth. This study also concerned with 
the practical testing of the model. 

For the feedback flank wear model [5], it is assumed that wear oc
curs by two principal mechanisms: a thermally activated one and a 
mechanically activated one. Each of these mechanisms is presented 
by a separate branch in the block diagram of the model which is shown 
in Fig. 1. The wear-rate due to the thermally activated mechanism 
is temperature dependent according to the well known Arhennius 
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equation, which is highly nonlinear. The integrator (1/s) provides the 
conversion from wear-rate to wear. The mechanically activated 
mechanism (which is taken to be independent of temperature) is 
presented by a first order lag with a time constant of T, which varies 
inversely with the cutting speed. The total wear, W, at any time is the 
sum of the wear due to the thermally activated mechanism Wi and 
the wear due to the mechanically activated mechanism, W2: 

W = Wi + W2 (1) 

As the tool wear land grows, the cutting forces increase due to 
sliding between the wear land and the workpiece. The power com
ponent of the cutting force can be written as [4, 5, 6] 

F = F„ + K3W (2) 

where F„ is the initial force for the sharp tool and K3 is a constant. 
This increase in power force results in higher temperatures so that 
the thermally activated wear rate Wx becomes bigger. The total effect 
is like that of a positive feedback loop: the wear-rate is temperature 
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Fig. 1 The original model 
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Fig. 2 The modified model 

dependent and the temperature in turn is dependent on the wear [7, 

8]. 
A drawback for practical utilization of the model shown in Fig. 1 

is the enormous number of constants (Fu, Kr, K[>, Kp, 0U, T, 7, n, y, 
z) most of which cannot be evaluated directly from wear curves. In 
the present paper a modification of this feedback model is presented. 
It yields a mathematical expression for the wear which allows for 
evaluation of parameters from actual flank wear curves. Experimental 
results are fitted to the model permitting separate observations of the 
thermally activated and mechanically activated wear components. 
In addition, estimations of the activation energy, for the thermally 
activated wear, and the mechanical wear constant are provided. The 
classic Taylor tool-life equation is derived from the model for a 
moderate range of cutting speeds, while the model yields another 
tool-life equation which is valid over a wider range of speeds. 

The Model 
A block diagram of the modified model is shown in Fig. 2. The pa

rameters Ku, Kn and the force F„ are assumed to be speed indepen
dent and are dependent on the feed and depth of cut. The parameters 
K\, K2 and r are dependent upon the cutting speed as well as on the 
other cutting conditions. The main modifications to the model in Fig. 
1 incorporate linearization of the thermally activated wear-rate 
component and an improved description of the mechanically activated 
component. In addition, fewer constants are required for using the 
modified model. The linearization of the exponential term permits 
the employment of the Laplace transformation technique. For the 
mechanically activated mechanism there is an initial high "run-in" 
wear rate which decreases to an almost "steady-state" wear-rate. The 
duration of the initial run-in stage depends on the time constant T, 
which varies inversely with the speed. The model assumes that the 
mechanically activated steady-state wear has the classical linear wear 
behaviour and is proportional to the force acting on the flank surface 
and the speed. The force acting on the flank surface is proportional 

Fo(s) 

l + S T 

*® S 

+ " i j W(s) 

K2 
s 

Fig. 3 Block diagram of the model 

to the additional force AF and the parameter K2 is proportional to 
the cutting speed. The integrator (1/s) provides the conversion from 
wear-rate to wear. 

For mathematical convenience the model is redrawn in Fig. 3. From 
control theory, the Laplace-transformed wear W(s) can be expressed 
as: 

. . . . , K„F„(s) , K1F0{s) + KlK3W(s) , K2K3W(s) 

1 + s T s s 

Equation (3) is solved for W(s): 

[K,+s(tf„ + ri<:1)]F„(s) 
W(s)=-

D(s) 

(3) 

(4) 

vhere 

D(s) = TS2 + (1 - TKIK: , - rK2K-A)s - KiK-j - K2K:i (5) 

The equation D(s) = 0 is the characteristic equation of the process. 
The roots of this equation are denoted by a and b such that equation 
(5) can be rewritten as 

D(s) = T(S - a)(s + b) (6) 

where 

a = K1K3 + K2K;i (7) 

b = 1/T (8) 

For constant feed and depth of cut, Fu(s) is a step input, namely 

F0(s) = F0/s (9) 

Substituting equations (6) and (9) into (4) yields: 

W ( S ) = J ^ + ̂  (10) 
s(s - a) D(s) 

Taking the inverse transform of equation (10) gives the time depen
dence of the wear land: 

W(t) = A(eat - l) + B ( l - e - ' " ) (ID 

-Nomencla ture-

C = the constant of Taylor's equation 
d = depth of cut 
F = power (principal) force 
F0 = initial power force 
Fx = horizontal (feed) force 
/ = feed 

n = the speed exponent in Taylor's equa
tion 

s = Laplace-variable 
T = tool life 
U = activation energy 
v - cutting speed 
W = width of flank wear 

M7! = land wear due to thermally-activated 
mechanism 

W2 = land wear due to mechanically-acti
vated mechanism 

0 = temperature 
7 = rake angle 
f = clearance angle 
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A=-
K,F„ 

B-

K„F„ 

r(a + 6) 

KUF„ 

(12) 

(13) 
r(a + 6) 

Similarly, the Laplace-transformed wear components W]{s) and 
Wi(s) in Fig. 2 can be expressed as: 

KtFM+KtK-jWls) 
Wi(s) = 

s 

W2(s) = + 
1 + ST S 

(14) 

(15) 

Substituting for F„(s) and W(s) from equations (9) and (10) yields 

(16) Wi(s) = : + -
sHs • sD(s) 

W->(s) = —: 1- -
»z(s sD(s) 

(17) 

Taking the inverse transforms of equations (16) and (17) gives the 
time dependence of the thermally and mechanically activated 
mechanisms, respectively 

Wi(t) = Ai(e'" - 1) + B2(e~b> - 1) + Kt 

W2(t) = A2(e"< - 1) + B2(l - e->") - Kt 

where 

A,= 
KiF,, K„Ft, 

TO(a + 6) 

= ^ A = ^_ 
Kx Ki + K 

K, 

K, + K; 

B, 

B; 

K-

a + b 

••K„F„-—Bi 
Kx 

KiK2K3Fu 

(18) 

(19) 

(20a) 

(206) 

(21a) 

(21b) 

(22) 

Note that by combining equations (20a) with (206) one obtains 

A = Ai + A2 

Similarly, combining equations (21a) and (216) yields 

B = B2-Bi 

The parameters A and B are defined by equations (12) and (13), re
spectively. As a consequence the wear equation, Eq. (11), is also ob
tained by summing of equations (18) and (19). 

Identification of Parameters 
Cutting tool wear behavior is typically characterized by a high initial 

wear rate followed by an almost constant "steady-state" wear rate. 
At some later time the wear rate may increase abruptly as the tool 
completely fails. An example of a wear curve plotted according to 
equation (11) is shown in Fig. 4 for A = 1.5mm, B = 0.1mm, 1/a = 
80min, 1/6 = 2min. It is seen that the curve describes the wear growth 
in the initial and steady state stages. The time duration of the initial 
run-in stage of wear is inversely proportional to 6. Therefore, the value 
of 1/6 is typically much smaller than the tool life. The interval usually 
taken as linear is exponential in the present model with a relatively 
large time constant 1/a. For this region, this exponential term can be 
approximated by 

e"> = 1 + at 

Combining this with equation (11) gives: 

W(t) = B + Aat-B, 

(23) 

(24) 

025 

B -^s 

^SIope-Aormm/min 

10 15 20 25 30 35 40 
t (mm) 

Fig. 4 Typical wear curve 

at which point the near-linear interval can be considered to begin. 
Therefore, the linear wear can be approximated by 

W(t) = B + Aat (25) 

Equation (25) provides for the evaluation of the parameters B and 
Aa (see Fig. 4). The slope of the linear portion is Aa, and the inter
section of its imaginary continuation with the W-axis gives the value 
of B. These values of B and Aa are used with equation (24) at small 
t in the run-in region to evaluate the parameter 6. 

In order to find separately the values of A and a, the effect of the 
exponential term e"' must be considered, which means that a large 
t should be applied. The largest applicable 4 is the tool life T. Equa
tion (11) is approximated at t = T by 

W{ = W(T) = ae" •A+B (26) 

The term Be bt decays rapidly and becomes negligible when t = 2/6 

Since Wf and T are given, and aA and B were already found, the 
values of A and a can each be calculated from equation (26) by a 
trial-and-error method. 

Considering the above discussion, it is seen that the wear process 
for a given condition can be characterized by four parameters A, B, 
a, and 6—which can be evaluated from experimental wear curves. The 
next step is to find the cutting speed dependence of these parame
ters. 

For typical cutting conditions the parameter 6 is much bigger than 
a, because the time constant for the initial "run-in" wear, 1/6, is much 
smaller than the time constant for the "steady-state" region, 1/a. In 
addition, it will be shown from the results to be presented that Kx » 
K2, thus the parameter a is approximated by 

a =* KiK3 

and consequently equations (12) and (13) can be approximated by 

A = (F„/K3) + K„FU (27) 

B = Kt,F„ (28) 

For the purpose of this analysis the power force F„ is assumed to 
be speed independent. The parameter K,„ representing the run-in 
stage of the mechanically activated mechanism, is speed independent 
as well. The parameter K$ represents the feedback mechanism (see 
Fig. 2) and has been found to be independent of cutting speed [4,9]. 
Therefore, the parameters A and B remain almost constant with 
speed, so that the speed dependence of the wear rate must enter 
through the parameters a and 6. The parameter 6 affects the initial 
run-in stage, while the parameter a affects the steady-state wear 
rate. 

Consider first the speed dependence of the parameter a. From 
equation (7) 

a = (Ki + K2)K3 (29) 

Since K3 is speed independent, the speed dependence must be related 
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to Ki and K2 which are proportional to the wear rate components of 
the thermally and mechanically activated mechanis, respectively. It 
will be shown from the results to be presented that this speed de
pendence can be approximated over a moderate range of speeds by 

Ki + K2 = cv" (30) 

where c is a constant. Defining a new constant Ci 

Ci = l/cK3 

and combining equations (29) and (30), gives 

a = v"ICx (31) 

Returning to equation (26), which can be rewritten as 

aT = \n[(Wf + A- B)IA] = C0 = constant (32) 

and combining it with equation (31), yields: 

o "T=C„Ci = C (33) 

which is the classic Taylor tool-life equation. 
Next, consider the speed dependence of the parameter b. The pa

rameter b is given in equation (8) as b = 1/T, and the time constant 
T is inversely proportional to the cutting speed. Therefore, b is pro
portional to the cutting speed: 

b = u/C2 (34) 

where C2 is measured in length units. 
The mathematical wear model given by equation (11) together with 

equations (31) and (34), provides a complete mathematical description 
of the wear land growth in machining: 

W(t) = A(e»""ci - 1) + B(l - e~ 2) (35) 

Likewise, the contribution of the wear components W\(t) and W2(t) 
can be obtained from equations (18) and (19) by substituting for a and 
b from equations (31) and (34). 

The parameters A, B, Ci, C% and n depend on the feed, depth of 
cut, and the tool and workpiece materials. The parameters A, B, a, 
and b can be determined from actual wear curves by the method that 
has been previously explained. The parameter n is the Taylor equation 
exponent. Ci and C2 are found through equations (31) and (34), re
spectively. 

In order to evaluate the parameters of the model shown in Fig. 3 
an additional measurement, of the power force F„, is required. The 
feedback parameter K3 might be either measured or evaluated from 
equations (27) and (28): 

K3 ^ FJ(A - B) (36) 

Equation (36) is based on the assumption that K\ » K2, which is 
especially valid at high speeds. The parameters of the mechanically 
activated run-in stage are determined from equation (28): 

K0 = B/F„ 

and from equations (8) and (34) 

r = C2/v 

(37) 

(38) 

The parameter K% of the thermally activated mechanism is evaluated 
from equation (12), which can be rewritten as 

A = KiFJa + B 

and, consequently, 

Ki 

(39) 

(40) 
Fa K3Cl 

The approximated term in equation (40) is based on (36) and 
therefore holds only at high speeds. 

A direct evaluation of the parameter K2 is more complicated since 
its order of magnitude is around 10~6 [mm/kg-min]. An alternative 
approach, based on approximation (30), is proposed here. 

Combining equations (29) and (31) gives 

K3(Ki + K2) ~ vn vn (41) 

The right side in equation (41) is the tool-life T, as given by Taylor's 
equation, equation (33). On the other hand, the speed dependence 
of the left side term in equation (41), which enters through the pa
rameters Ki and K2 (K3 and C„ are speed independent), must be 
derived. Comparing the original model of Fig. 1 with the modified 
model shown in Fig. 2, yields the following relationship: 

where 

^ = Ki'e-O'M™^ 

K^ = KD/KTumfd*/0a = KD/Fa 

(42) 

Fa and 8a are average values of the cutting force and temperature for 
a certain speed. fl„ is a constant depending on the activation energy 
and can be estimated by a method to be presented. The temperature 
0a can be evaluated by the formula [5, 6] 

0„ = Knu" (43) 

Assuming that Ki> is a known constant, the speed dependence of the 
exponential term in equation (42) is known. 

The parameter K2 is the ratio between the mechanically activated 
steady-state wear rate and the additional force on the flank surface. 
So it must be proportional to speed and can be expressed by 

K2 = K2'v (44) 

As a consequence, the speed dependence of the left side of equation 
(41) is known: 

C0/K3 

The constant C„ depends upon the final wear land and determined 
by equation (32). Choosing now two actual tool-life values for two 
different speeds results in two equations. Solving these equations for 
the two unknowns: K\ and K2, completes the evaluation of the model 
parameters from actual flank wear curves. 

E s t i m a t i o n of W e a r C o n s t a n t s 
Since the proposed model separates the thermally and the me

chanically activated wear components, it allows for estimation of the 
activation energy on the one hand, and the mechanically activated 
wear coefficient on the other hand. 

(a) The Activation Energy. The order of magnitude of the ac
tivation energy might be estimated from equation (41). At high cutting 
speeds Kt » K2 thus equation (41) is approximated by 

C„ C 

K1K3 V" 

Substituting for K\ from equation (42) yields: 

(CKsKi>/C0)e-<l<>«m+l>°l = v" 

ln(CK3Ki'/C„) - 8„/(273 + Ba) = n ln(u) 

(46) 

(47) 

(48) 

where 8a is given by equation (43) and the other parameters are speed 
independent. Differentiating both sides of equation (48) with respect 
to ln(u), (in order to compare slopes in equation (47) on a logarithmic 
chart) gives: 

60 = 
n(273 + 0a)

9-

m0„ 
(49) 

For v = 200m/min and Ko = 80, equation (43) provides a temper
ature estimate of 869 °C. Typical values of carbide tools are n = 3 and 
m = 0.45. For this numerical data equation (49) results in ft, = 10000° 
C. The activation energy U is calculated from 

U = R8„ (50) 
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where R is the universal gas constant 1.98cal/mole C. Since 80 = 10000, 
the resulted activation energy is 20Kcal/mole. The same value was 
obtained for crater wear when cutting with tungsten carbide tools at 
low speeds [7]. This suggests that the thermally activated wear land 
growth mechanism at high cutting speeds may be the same as that of 
crater wear at low cutting speeds. 

(b) Wear Coefficient. The rate of volume removed by a me
chanically activated mechanism at the steady-state is given by [10] 

S/o = KmNu (51) 

where N is the normal load on the surface and Km is the volume wear 
per unit load per unit sliding distance. In machining the relationship 
between the normal force on the flank surface and the friction force 
AF acting at the flank is constant [6, 9]: 

AF = hN 

Since A.F = K-jW, equation (51) becomes 

V2 = (v/h)KmK3W (52) 

On the other hand, the total wear volume is given by [2] 

V = - d tan f W2 

2 
(53) 

where d is the depth (or width) of cut and f is the clearance angle. 
Differentiating of equation (53) with respect to time yields: 

V = d tan tWW = d tan £W(Wi + W2) 

The mechanically activated wear volume rate is given by 

V2 = d tan {WW2 

Comparing equations (52) and (55) at the steady state gives: 

hd tan fW2s 
Km=-

uK3 

(54) 

(55) 

(56) 

where W2s is the mechanically activated wear rate component at the 
steady-state. The mechanically activated wear at steady-state is de
rived from equation (19) with substitution of (23) for eat and ne
glecting the term e~bt 

W2s = B2 + (aA2 - K)t (57) 

Differentiating of (57) and substituting the definitions for A2 and K 
from equation (20) and (22) results in: 

W, 
K2K,K„F„ 

T(Q + b) 

and finally combining (58) with (13) and (44) yields 

W2s = BKsK2'u 

(58) 

(59) 

W 
(mm) 

«v 
$/ 
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-""" B 
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Fig. 6 Measured and calculated wear curves (AISI 1045 steel; / = 0.14 
mm/rev; d = 1.5mm) 

Substituting of equation (59) into (56) gives 

Km = hd tan fBK2' (60) 

Mechanically activated wears are catalouged in terms of a wear 
coefficient z defined as [2] 

mK„ (61) 

where H is the hardness of the material. Thus, an evaluation of K„, 
provides an estimation of the wear coefficient. 

M a c h i n i n g T e s t s 
In order to evaluate the parameters appearing in the wear equation, 

Equation (35), it is necessary to have results for at least two different 
cutting speeds. Consider first the results of machining AISI 4340 steel 
with CX(AA) carbide tool, as presented in reference [11] and shown 
in Fig. 5. Curves described by equation (35) were fitted and the con
stants obtained were: 

n = 1.70 d = 2.8 X 107 

A = 5.72mm C2 = 100m 

B = 0.25mm 

As a second practical example, flank wear curves obtained by 
turning experiment at a constant feed (0.14mm/rev) and depth-of-cut 
(1.5mm) are given in Fig. 6. Results were obtained for an ISO P-20 
carbide tool, turning SAB 1045 steel at 120m/min and 200m/min. The 
solid lines were obtained by least-square fitting correspond to equa
tion (35) with the following constants: 

n = 2.67 d = 1.2 X 108 

A = 1.0mm C2 = 400m 

B = 0.095mm 

The value of C in Taylor's equation (equation (33)) for Wf = 0.3mm 
and u = 200m/min (T = 16min) is C = 2.2 X 107. For this speed IIa 
= 86min and 1/6 = 2min, which shows that the assumption b » a 
holds. 

In order to evaluate the parameters of the model power force 
measurements were carried out as well. Fig. 7(a) shows the relation
ship between the power force and the wear land. The slope of the lines 
is the parameter K3 which was calculated by least square fitting, re
sulting in Ks = 60kg/mm. The experimental results are somewhat 
surprising because of the relatively big difference between the initial 
forces at 120m/min (65kg) and 200m/min (55kg). The analysis is 
carried out with an average speed independent power force of 60kg. 
The mechanically activated run in parameter is calculated from 
equation (37): 

K„ = 0.095/60 = 1.58 X 10~3 [mm/kg] 

In order to evaluate the parameters K\ and K2 a wear land of 
0.3mm is taken as a tool-life criterion. The corresponding values for 
speeds of 120 and 200mm/min are 62.8 and 16.1min, respectively. The 
constant C„ is determined from equation (32) for Wf = 0.3mm. The 
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Fig. 7 Power force versus cutting time 

0.5 

parameter 0„ was estimated for n = 3 as 10000° C. Since in our case 
n = 2.67 and 0„ is proportional to n (equation (49)) a value of 0„ = 
8900° C is assumed. The temperature S for the given feed (0.14mm/ 
rev) and depth of cut (1.5mm) is approximated by [5] 

8„ = S0v0M (62) 

Equations corresponding to equation (45) are derived from this 
data: 

62.8 (9.69 X 10~5Kj' + 120K2') = 3.11 X lO"''' 

16.1 (40.97 X 10-5AV + 200K2') = 3.11 X 10";! (63) 

which have the solution K\ ^ 0.45mm/kg-min; K2' ^ 5 X 

10~amm/kg-m. As a consequence the tool-life equation is given by 

T = 3.11 X 10-!/(0.45e-8900/<273+»..> + 5 X 10'%) (64) 

where 0„ is given in equation (62). The tool-life defined by equation 
(64) was plotted against cutting speed in a logarithmic scale (see Pig. 
8). 

For comparison a tool-life calculated from Taylor's equation 

TV-67 = 2.24 X 107 (65) 

was plotted on the same chart, the two curves almost coincide in the 
range 70 < v < 260m/min (error less than 5 percent) which confirms 
the approximation given in equation (30). In the lower speed range 
the curve obtained by equation (64) is seen to agree with practical 
curves [1], while it is known that Taylor's equation is valid only over 
a certain range of speeds. 

The coefficient of the mechanically activated wear Km can be es
timated from equation (60). The normal force acting on the flank is 

100 200 
v ( m/min) 

Fig. 8 Tool lite versus cutting speed 

300 400 

the horizontal force Fx given in Fig. 7(6). Comparing Figures 7(a) and 
7(6) shows that 

dF _ 60 dFx 

dW~ 27 dW 

namely, h = 2.22. (For comparison, h = 1.72 has been obtained in [9] 
for the same tool and workpiece material, d = 1mm, / = 0.2mm/rev.) 
The depth of cut in this experiment was 1.5mm and the clearance 
angle 6 deg. The parameter B and K2' are 0.095mm and 5 X 
10~8m/kg-m, respectively. This data results in 

K, = 1.66 X 1 0 - p ^ l = 1.66 X 1 0 - [ = ! 1 
Lkg-mJ L kg J 

(66) 

The wear coefficient z might be determined from equation (61). 
The derivation of the model's parameters permits the plotting of 

the thermally and mechanically activated wear components against 
time. The required constants are calculated from equations (12), (13), 
(20), (21), (22), (42), (44), and (62), and are summarized in Table 1. 

Fig. 9 shows the time dependence of the thermally and mechanically 
activated wear components for v = 200m/min. Curves were drawn 
according to equations (18) and (19) with parameters given in Table 
1. We see that upon the termination of the run-in range, the wear land 
growth mechanism is mainly thermally activated. 
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Fig. 9 Thermally and mechanically activated wear 

C o n c l u s i o n s 
A physical model of the flank-wear, based on a feedback mechanism 

has been presented. Two principal mechanisms were assumed as wear 
causes: a thermally activated one and a mechanically activated one. 
The total wear occuring on the flank surface of the cutting tools is 
equal to the sum of the wear due to the separate effects of these 
mechanisms. The model yields a mathematical expression describing 
the wear land growth with time. Good agreement with practical data 
has been demonstrated. 

The parameters of the model can be evaluated directly from ex
perimental wear curves with an additional measurement of the cutting 
force. As a consequence, the relative weight of the thermally and 
mechanically activated wear components is known. 

The model yields the tool life as a function of the cutting speed, and 
provides a formula for the tool life (equation (45)) which is not based 
on Taylor's equation. In addition the experimental results were fitted 
to the model providing estimations for the activation energy and the 
coefficient of the mechanically activated wear. 
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Table 1 Parameters of the model 

Parameter 

K l 

h 

a 

b 

A 

A l 
A2 

B 

B l 
B2 

K 

v = 120m/min v = 200m/min Units 

l .58x !0" 3 

4.35xl0" 5 

0.60*10 - 5 

60 

2.9?xl0~3 

0.3 

0.974 

0.846 

0.128 

0.095 

0.096 

3.4x l0" 7 

] .58*10"3 

18.4*10~5 

l.OOxlO"5 

60 

U 6 * ! 0 " 2 

0.5 

1.032 

0.974 

0.058 

0.094 

0,002 

0.096 

-4 
6 . M 0 * 

mm/kg 

mm/kg-min 

mm/kg-min 

kg/mm 

1/min 

1/min 

mm 

mm 

mm 

mm 

mm 

mm 

m m / m i n 
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