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ABSTRACT 

An important aspect of product development is design for 
manufacturability (DFM) analysis that aims to incorporate 
manufacturing requirements into early product decision-
making. Existing methods in DFM seldom quantify explicitly 
the tradeoffs between revenues and costs generated by making 
design choices that may be desirable in the market but costly to 
manufacture. This paper builds upon previous work 
coordinating models for engineering design and marketing 
product line decision-making by incorporating quantitative 
models of manufacturing investment and production allocation. 
The result is a methodology that considers engineering design 
decisions quantitatively in the context of manufacturing and 
market consequences in order to resolve tradeoffs, not only 
among performance objectives, but also between market 
preferences and manufacturing cost. 
 
Keywords: preference coordination, analytical target 
cascading, design optimization, marketing, decision-based 
design, design for manufacturing, design for production 
 
1. INTRODUCTION 

The new era of globalization has influenced both product 
portfolio variety and the architecture of the manufacturing 
systems producing these products. Product designers are 
interested in reducing the cost of their products while offering 
product characteristics demanded by a heterogeneous market. 
Tools such as Quality Function Deployment (QFD) have 
helped designers organize thinking about the relationship 
between design decisions and stakeholder preferences, and 
research in Design for Manufacturing (DFM) has offered 
practical methods for improving designs with respect to 
manufacturing considerations (Herrmann et al., 2004). 
However, few of these methods incorporate quantitative models 

for making tradeoffs between the revenue and cost 
consequences of design changes that are less costly to 
manufacture but also less desirable in the marketplace. For 
example, Taylor et al. (1994) discuss how the strategy of 
“design to fit an existing environment (DFEE)” can 
significantly reduce costs by adapting new designs to better fit 
the capacity and capability constraints of existing 
manufacturing equipment; however, the issue of how much to 
compromise the desirable features of a new design to improve 
accommodation on existing equipment, particularly when 
design compromises have market consequences, remains an 
open question.  

Recent design research has taken interest in coordinating 
traditional normative performance-based engineering design 
decision models with models of business objectives. In 
particular, decision-based design (DBD) research has focused 
on utilizing the framework of decision theory to examine 
design decisions under uncertainty with respect to a single 
objective function, called designer’s utility (Hazelrigg, 1988). 
This designer’s utility function is typically implemented in 
terms of the producer’s downstream business objectives, such 
as profit or market share, and consequently, research on 
understanding and utilizing models that predict the effects of 
product characteristics on these firm-level objectives has 
become critical to defining DBD problem statements fully 
(Wassenaar and Chen, 2003).  

An array of methods has emerged, both within and outside 
the DBD label, to consider quantitatively the link between 
technical decisions and business objectives (for example, Gu et 
al., 2002; Georgiopoulos, 2003; Michalek et al., 2005a). Most 
of these methods address the design of a single product; 
however, two methods in particular address decision making 
for lines of products, a more useful scope for consideration of 
manufacturing investment and production allocation. Li and 
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Azarm (2002) proposed a two-stage method that involves 
generating a set of designs that approximates the Pareto surface 
and selecting candidate designs from this set to compose the 
product line. This method is suited for products with 
characteristics that are monotonically preferred by the entire 
consumer population, so that a common Pareto set is defined 
for all potential users; however, extension to product 
characteristics that have different ideal values throughout the 
population, such as the example examined in this paper, is not 
obvious. Michalek et al. (2005b) proposed an alternative 
method for product line design using analytical target cascading 
(Kim, 2001) to coordinate a product planning subproblem with 
a set of engineering design subproblems. In this formulation the 
product planning subproblem sets target product characteristics 
for the line based on a heterogeneous model of consumer 
preferences, and each engineering design subproblem attempts 
to achieve target product characteristics for one product in the 
line subject to engineering constraints. This second method is 
adopted here and extended to include: (1) the setting of 
production volume targets to be achieved for each product in 
the line subject to capacity constraints that depend on the 
allocation of purchased equipment; and (2) the setting of cost 
budget targets in the planning subproblem, to be achieved by 
the purchase of equipment and production of the design. The 
result is a methodology that considers engineering design 
decisions quantitatively in order to resolve tradeoffs not only 
among performance objectives, but also between market 
preferences and manufacturability.  

Research in concurrent engineering has aimed to move the 
product development process from a sequential approach, as 

shown in Figure 1, toward a concurrent process where the goals 
and preferences of interrelated disciplines are negotiated 
iteratively, as shown in Figure 2. The proposed methodology 
can be viewed as an approach to facilitating communication in 
concurrent engineering at design stages where parametric 
models can be called upon to predict results of design 
decisions. Herrmann et al. (2004) discuss: “As industries have 
grown in size and complexity, marketing, design, and 
manufacturing departments have evolved into separate 
organizations, each with [its] own specialized knowledge. 
While this makes the streamlined creation of complex products 
possible, it has also increased the knowledge and 
communication barriers between these areas. … In practice, 
engineered systems are usually too complex to truly consider 
all issues simultaneously. More commonly, concurrent 
engineering (and DFM) is accomplished through an iterative 
‘spiral’ design process … in which marketing experts, 
designers, manufacturing engineers, and other personnel jump 
back and forth between identification of customer needs, design 
of the product, and assessment of manufacturing issues.” It is 
this iterative coordination process that the proposed ATC 
methodology aims to automate using rigorously defined 
coordination of mathematical models from each discipline. It is 
also the hope that the existence of such a structure for 
coordination and optimization may drive the development of 
appropriate models in cases where models from some 
disciplines have not yet been built. Previous work has shown 
that the ATC coordination process produces optimal solutions 
from a firm’s perspective that are superior to those produced 
through a sequential approach (Michalek et al., 2005a).  

2. METHODOLOGY 
 In the proposed methodology, shown in Figure 2, decision 

models from design, business, and manufacturing are 
coordinated with one another to make tradeoffs with respect to 
a firm-level objective and reach a consistent solution that is 
optimal for the firm. The proposed methodology for 
coordinating design, business, and manufacturing decisions is 
built on models developed by Michalek et al. (2005b) using 
analytical target cascading (ATC) for coordination of the 
disciplines. ATC is a mathematical optimization technique for 
decomposing a system into a hierarchy of subsystems and 
coordinating optimization of each subsystem in such a way as 
to achieve the optimal solution of the overall system. In this 
case, the system is the firm, and design and manufacturing are 
viewed as subsystems. Decomposition of a system into a 
hierarchy of subsystems can be advantageous because it assists 
in model management and it reduces practical difficulties 
associated with problem dimensionality, since the models of 
each subsystem typically have fewer variables and constraints 
than the combined full system model. ATC was applied first to 
engineering systems (Kim et al., 2003), and has since been 
applied in the field of architecture (Choudhary, 2004) and to the 
coordination of marketing and engineering design decisions in 
an enterprise context (Michalek et al., 2005a). ATC achieves 
joint solutions by a procedure involving the setting of targets at 
each level of the hierarchy for the subsystems at the level below 
in order to achieve targets passed by supersystems above. This 
procedure is iterated at each level of the hierarchy until 
convergence. It was proven by Michelena et al. (2003) and later 
clarified by Michalek and Papalambros (2005) that separately 
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solving subsystems in the ATC hierarchy using certain 
coordination strategies will produce a solution arbitrarily close 
to the solution obtained when the full non-decomposed system 
is solved all together. In the present case, this means that 
marketing planning, engineering design, and manufacturing 
models can be solved separately and coordinated, resulting in 
solutions that are optimal from the firm’s perspective. The 
previous product line decision model (Michalek et al., 2005b), 
upon which the current formulation is built, accounts for 
marketing and engineering design but does not include 
manufacturing decisions. In the proposed formulation, previous 
models for marketing and engineering design are used 
whenever possible, and Sriraman et al. (2002) is referenced for 
development of the manufacturing components of the model. 

In the proposed formulation the ATC hierarchy contains a 
marketing planning subproblem, a manufacturing subproblem, 
and one design subproblem for each product j = {1, 2, …, J} in 
the product line. The task of the marketing planning 
subproblem is to set the price for each product in the line along 
with targets for each product’s characteristics, production 
volume, and cost so that predicted profit is maximized over a 
fixed time period. Here, the term “product characteristics” 
refers to quantitative aspects of the final product observed by 
the customer resulting from the detailed engineering design 
decisions. Profit is predicted as a function of cost and demand, 
where demand depends on the characteristics and prices of the 
products. Without information from the manufacturing and 
design subproblems, marketing would set low cost, high 
production volume, and desirable product characteristics to 
maximize profit; however, ATC coordination with the other 
subproblems will ensure that these targets are mutually 
realizable at the solution. Target costs and product 
characteristics passed to the product design subproblems are 
achieved as closely as possible by manipulating the design of 
each product. Likewise, production volume targets are achieved 
by allocating design of the product’s components to available 
machines while ensuring that each component can only be 
made on machines capable of manufacturing the component 
design.  

Life-cycle and dynamic manufacturing issues are not 
considered in the model. Instead, it is assumed that a set of 
candidate machine types are available for purchase, and the 
manufacturing subproblem manages decisions of how many 
machines of each machine type will be purchased to match the 
cost targets set by marketing while simultaneously providing 
sufficient machine capacity for producing the components 
designed in each engineering design subproblem. The 
production volume achievable for each product depends on the 
amount of machine time available for that product, so linking 
variables are included to coordinate machine time requests and 
allotments between the engineering design subproblems and the 
manufacturing subproblem. In the following sections, the 
mathematical formulation of each subproblem will be described 
in detail. 

2.1 Marketing Planning Subproblem 
In the marketing subproblem, shown in Figure 3, decision 

variables include price pj, target production volume VM
j, target 

unit material cost cM
j, and a vector of target product 

characteristics zM
j set for each product j in the product line, as 

well as a target for manufacturing cost CM, and a coordinating 

linking variable TM
jm, which will be discussed later. These 

variables are manipulated in order to maximize profit Π. In the 
ATC framework, the target values set in the marketing planning 
subproblem are manipulated independently of the values 
achieved by the manufacturing (CP) and engineering design (VE

j, 
cE

j, zE
j ) subproblems, but the objective function contains terms to 

minimize deviation between each target value and achieved 
value, where deviation is measured using the square of the l2 
norm || ||22, as shown in Figure 3. In this way the details of the 
design, cost, and capacity allocation are handled outside of the 
marketing subproblem, but they are coordinated with marketing 
targets for these values, which are driven by the profit 
objective. As detailed in Michalek and Papalambros (2005), 
each deviation term contains a weighting coefficient vector to 
specify the importance of maintaining consistency between 
targets and responses relative to the importance of maximizing 
profit, and sufficiently large weights are required to achieve a 
solution with acceptably small inconsistency tolerances; 
however, this detail is removed in the figure for clarity. 

Predicted profit of the product line depends on the selling 
price of each product, the costs incurred, and the demand for 
each product. While price and cost targets are variables in the 
marketing subproblem formulation, demand is a function of the 
characteristics and prices of the products. This functional 
relationship is taken from Michalek et al. (2005b), who use 
discrete choice econometric models fit to consumer choice data 
collected through a conjoint survey to predict demand. A brief 
description of this model is presented here, and interested 
readers may consult the references for full detail.  

The discrete choice demand model is a random utility 
model, which assigns a scalar utility value to each alternative in 
a choice set and models individual choice as a process of 
selecting the alternative with the highest associated utility 
value. Utility itself is not observed directly; however, aspects of 
the choice situation, such as the characteristics of the product, 
can be used to infer statistical patterns of choice through 
observation. Specifically, the utility uij of a product j to an 
individual i consists partly of a deterministic term vij, based on 
observable, measurable aspects of the choice scenario, and 
partly of a stochastic, unobservable error term εij, so that uij = vij 
+ εij. Utility is used to describe probabilistic choice, so that the 
probability Pij of individual i choosing product j from a set of 
options is equal to the probability that uij > uij′ for all 
alternatives j′ ≠ j in the set, so that Pij = Pr[vij + εij > {vij′ + 
εij′}∀j′≠j]. 

The observable component of utility vij is a function of the 
measured aspects of the choice situation. In the homogeneous 
case, only aspects of the product j are measured, not aspects of 
the consumer i, so vij = vj = f(zj, pj). This function can take 
different forms, and here it is a spline interpolation of the main-
effects model of the discretized product characteristics and 
price. Procedurally, zj and pj are compiled into a single vector 
of “attributes” with elements indexed by ζ; the domain of each 
attribute is discretized into a finite number of levels Ωζ indexed 
ω = 1, 2, …, Ωζ; a binary dummy variable δjζω is defined such 
that δjζω = 1 if product j has attribute ζ at level ω, and δjζω = 0 
otherwise; and finally vj = ΣζΣω(βζωδjζω), where βζω is the “part-
worth” or component of utility associated with attribute ζ at 
level ω. The values for the βζω coefficients in this main-effects 
model are determined by conducting a choice-based conjoint 
survey generated using experimental design techniques where 
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the levels of each attribute are systematically varied to reduce 
biases in estimating the model using a small number of survey 
questions (experiments). Each respondent is shown product 
profiles in a series of choice sets and asked to choose one from 
each set. The resulting data are used to estimate the best fit 
values of βζω using classical maximum likelihood techniques or 
Bayesian methods.  

In order to account for heterogeneity of preferences in the 
consumer population, the βζω coefficients may be assumed to 
vary across the population. In the present model the βζω 
coefficients of individuals are distributed following a mixture 
of multivariate normal distributions, and the parameters 
defining the mixing components are fit to the data using 
Bayesian Markov Chain Monte Carlo (MCMC) techniques. 
Finally, βiζω coefficients are drawn for a random set of 
individuals i from the mixture distribution, and a natural cubic 
spline function Ψiζ is fit through the βiζω coefficients at levels ω 
= 1, 2, …, Ωζ for each attribute ζ to interpolate β values of 
intermediate attribute levels for that individual. Using these 
splines, vij = Ψi0(pj) + Σζ Ψiζ(zjζ), where price p is indexed as 
attribute ζ = 0. Now, with the spline-interpolated function for vij 
estimated using survey data, it is possible to calculate the 

observable component of utility vij for a product j with any 
given product characteristics zj and price pj.  

The form of Pij with respect to vij depends on assumptions 
about the distribution of the unobserved error term εij. The two 
common assumptions are: (1) Take εij to be normally 
distributed, resulting in the probit model, which requires 
multidimensional integration to evaluate, or (2) take εij to 
follow the double exponential distribution, resulting in the logit 
model, which produces nearly indistinguishable results from 
the probit model and results in a simple closed form solution: 
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This logit form is preferable for optimization, because it is 
quick and precise to evaluate. Finally, the demand qj for a 
product j can be calculated by evaluating the average Pij across 
a number of individuals i = 1, 2, …, I and multiplying by the 
size of the represented population S. This model of product 
demand is summarized in Figure 3, and greater depth regarding 

 Marketing Product Planning Subproblem

( )( )

2 2 2M E M E M E

2 2 2

2 2 2M E M P M P

2 2 2

M M M M M

M

M M M

minimize 

                            

with respect to , , , , , ; ,

subject to ;

where 

j j j j jm jmj j j m

j j jm jmj j m

j j j j jm

j j

j j jj

V V T T

c c C C T T

p V C c T j m

V q j

V p c C

−Π + − + − + −

+ − + − + −

∀

≤ ∀

Π = − −

∑ ∑ ∑ ∑
∑ ∑ ∑

∑

z z

z

( ) ( )( )
( ) ( )

1

0

           exp exp

           

j ij iji j

ij j j

sq v v
I

v p ζ ζζ

−

′′
⎛ ⎞= ⎜ ⎟
⎝ ⎠

= Ψ + Ψ

∑ ∑

∑ z

Manufacturing Subproblem 

( )( )
{ }

( )

2M P

2
2M P

2

P

P

P

max

P I O P
1

minimize 

   

with respect to ,

subject to 

    * 1 0

                   0,1,2, ,

where 

*omitted in the relaxed problem

jm jmj m

jm m

jm mj

jm mj

m m m jmm j

C C

T T

T

T T

T aT a

a

C c c T

κ

κ

κ

κ

κ

−

+ −

≤

− + − ≤

∀ =

= +

∑ ∑

∑
∑

∑ ∑
…

Design Subproblem 1

( ) ( )

( )
( )

2 2M E M E
1 1 1 12 2

2 2M E M E
1 1 1 12 2

E E
1 1 1 1

1 1

E
1 1

1 1

1 1

minimize 

      

with respect to , , ,
subject to ,

                

                

                

m mm

lmn m

lmnm

lmn lmn

lmn lmnl n

V V

c c T T

V V T

V V

V

V r

− + −

+ − + −

≤ =

≥

≤

∑

∑

∑ ∑

z z

x
g x 0 h x 0

g x 0

x

( )
( )

E
1

E
1 1

E S
1 1

where 

           

m

l ll

T

c cξ

≤

=

= ∑
z r x

x

Design Subproblem J

( ) ( )

( )
( )

2 2M E M E

2 2
2 2M E M E

2 2

E E

E

minimize 

        +

with respect to , , ,
subject to ,

                

                

                

J J J J

J J Jm Jmm

J J Jlmn Jm

J J

Jlmn Jm

Jlmn lmn J

Jlmn lmn Jn

V V

c c T T

V V T

V V

V

V r

− + −

− + −

≤ =

≥

≤

∑

∑

∑

z z

x
g x 0 h x 0

g x 0

x

( )
( )

E

E

E S

where 

           

Jml

J J

J l l Jl

T

c cξ

≤

=

=

∑

∑
z r x

x

 

MC  

PC  

M M M
1 1 1, ,V cz

E E E
1 1 1, ,V cz  

M M M, ,J J JV cz
E E E, ,J J JV cz

P
1mT  

E
1mT  

E
JmT  

P
JmT

(linking variables coordinated by parent element) 
 

Figure 3: ATC coordination of marketing, engineering design, and manufacturing decisions 
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the development of the model is available in Michalek et al. 
(2005b).  

If the target production volume VM
j of each product j is less 

than or equal to demand, the resulting profit Π can calculated as  
 

( )( )M M M
j j jj

V p c CΠ = − −∑ . (2)  

 
If production volume were to be greater than demand, profit 
would be calculated in terms of demand, but here a constraint is 
included to ensure that VM

j < qj. It is true that VM
j = qj at the 

solution, since it is not profitable to produce more or less than 
demanded, so it is not necessary to allow VM

j to deviate from qj 
in the formulation. However, if VM

j = qj is enforced during 
optimization, this can result in the marketing subproblem 
working to make product characteristics less desirable in order 
to match predicted demand to the lower production volumes 
achieved by engineering at intermediate iterations. This can 
increase computational time and also result in driving the 
marketing subproblem into an undesirable area of the design 
space where it may settle to a local minimum of lower global 
quality. Allowing VM

j < qj is simply a convenience to speed up 
computation time by allowing each product to attract more than 
VM

j individuals at intermediate iterations. At the solution, the 
profit objective will ensure that the constraint is active so that 
VM

j = qj.  
Finally, the marketing subproblem includes a coordinating 

linking variable TM
jm to coordinate machine time allocation for 

each product j and each machine type m between the 
manufacturing subproblem TP

jm and each engineering design 
subproblem TE

jm. More detail about this variable will be 
provided in later sections as the marketing subproblem serves 
only as a parent coordination element with respect to TP

jm and 
TE

jm, as described in Michalek and Papalambros (2005). 
The objective function of the marketing subproblem is then 

to maximize profit and minimize deviation between targets and 
responses of the unit material cost cM

j, investment and operating 
cost CM, product characteristics zM

j, production volume VM
j, and 

machine time TM
jm variables for all products j and machines m. 

The full formulation of the marketing planning subproblem and 
its relationship to the other subproblems is shown in Figure 3. 

2.2 Manufacturing Investment Subproblem 
It is assumed that a fixed number of machine types m = {1, 

2, …, M} is available from which to choose, and the firm must 
decide how many machines κm of each machine type to 
purchase. The possibility of leasing equipment is not 
considered, and the cost of product-specific tooling is ignored. 
The manufacturing subproblem is tasked with dividing up the 
purchased machine time among products in the line by setting 
decision variables TP

jm, indicating the amount of time on 
machine m allocated to product j. Only allocation of machine 
time is considered here. Production issues such as machine 
configuration and reliability (Hu and Koren, 2005) and 
sequencing (Kurnaz et al., 2005) are left for future work. If the 
parameter T represents the amount of machine time available 
per machine in a fixed period (i.e., the number of working 
hours over the period), then κmT is the total time available from 
κm machines. Therefore, TP

jm is constrained such that  
 

P
jm mj

T Tκ≤∑ . (3)  
 
In practice, each κm must be a nonnegative integer (0, 1, 2, …) 
because it is not possible to pay for a fraction of a machine at a 
fraction of the cost to receive a fraction of the capacity. 
However, the formulation is designed so that this requirement 
can be relaxed, permitting purchase of fractional numbers of 
machines. The solution to this relaxed problem will provide an 
upper bound on the amount of profit achievable by the more 
realistic situation where κm is restricted to integers. One way to 
restrict κm to integer values is to do so explicitly in the 
formulation, resulting in a mixed integer nonlinear 
programming problem (MINLP). However, ATC currently has 
not been proven to converge for discrete formulations, and 
further research is necessary to extend the applicability of ATC 
to these problems. To avoid the use of integer variables, it is 
possible to restrict the κm terms to integer values while working 
entirely in a continuous space: For a particular value of a, the 
following constraint 

 

( )( )P 1 0jm mj
T aT a κ− + − ≤∑  (4)  

 
coupled with simple boundary constraints restricting TP

jm > 0, 
ensures that when fewer than (a+1) machines are purchased 
(i.e., when κm < a+1), the total machine time allocated must not 
be greater than aT, the time provided by a machines. A set of 
these constraints for all a = {0, 1, 2, …} enforced together 
ensures that at least a machines must be purchased in order to 
use a machines worth of time, for all values of a. In 
implementation, values of a need only be considered up to the 
maximum number of machines that may be purchased. While 
this set of constraints enables operation in a continuous domain 
and results in integer solutions for κm, it does not resolve all 
difficulties. This set of constraints creates a “stair step” shaped 
feasible region, and given the shape of the objective function, 
there are many cases where the shape of the feasible region 
creates several local minima: each at an integer value. 
Therefore, while the formulation allows operation in a 
continuous domain, solving for the optimum integer value of κm 
requires global search.  

The strategy used here is to solve the relaxed problem 
(without the constraints in Eq.(4)) to obtain an upper bound on 
the profit achievable by the more restrictive problem. Next, 
starting from the optimum of the relaxed problem, penalty 
functions representing Eq.(4) are added to the objective 
function with a penalty coefficient parameter that increases 
over time until the solution is forced out of the infeasible 
region. This procedure results in a local minimum that is nearby 
the solution to the relaxed problem. The solution is not 
guaranteed to be the global solution; however, if it is within an 
acceptable deviation from the solution of the relaxed problem, 
it may be considered an acceptable and useful local solution. 

Additionally, the cost of purchasing κm machines of type m 
is given by κmcI

m, where cI
m is the investment cost per machine 

of type m. The cost to operate the machines of type m is 
Σj(cO

mTP
jm), where cO

m is the cost per unit time to operate machine 
type m (labor cost plus machine use cost). The total production 
cost CP is composed of investment and operating cost, so that 
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m m m jmm j

C c c Tκ= +∑ ∑ . (5)  

 
Finally, the objective of the manufacturing subproblem is 

to minimize deviation from the cost targets CM passed from the 
marketing subproblem and minimize deviation from the 
machine time allocation linking variables TM

jm, with values 
requested by each engineering design subproblem and 
coordinated by the parent marketing subproblem. The full 
formulation of the manufacturing subproblem is provided in 
Figure 3.  

2.3 Engineering Design Subproblems 
In each engineering design subproblem, the product 

characteristics zE
j (the aspects observable by the customer) are 

predicted as a function of the design variables xj (the aspects 
manipulated by the engineer) so that zE

j = r(xj), where r is a 
typical parametric engineering model or simulation. The 
engineering variables defining the design xj are optimized to 
achieve resulting product characteristics zE

j as close as possible 
to the targets zM

j set by marketing, as shown in Figure 3. 
Secondly, each engineering design subproblem must attempt to 
meet production volume targets set by marketing VM

j by 
manipulating the production volume of the product VE

j. 
However, production volume of each product j is achieved by 
producing sufficient quantities of the components that comprise 
the product, so the individual components l = {1, 2, …, L} 
composing each product j must be considered. The parameter ξl 
defines the number of units of component l contained in each 
product. Each component l may require several manufacturing 
operations n = {1, 2, …, Nl}; for example, production of a 
single component may require shearing, drawing, and bending 
operations. Production of the components l  = {1, 2, …, L} that 
make up the product j must be allocated to machines m = {1, 2, 
…, M} in such a way that each component design meets the 
capability requirements of each machine on which it is made 
and the total time requests made for each machine do not 
exceed the amount of time allocated. It is assumed that none of 
the designs in the product line share components. This is a 
limitation since it is common to design product families that 
share specific components among different product designs in a 
line to save costs (Kota et al., 2000; Thonemann and Margaret, 
2000; Fellini, 2003; Simpson, 2004); however, questions of 
commonality add significant complexity, and it is a reasonable 
first step to rule out this possibility. 

The component production volume variable Vjlmn, 
represents the number of units of component l in design j on 
which operation n is performed by machine m. The production 
volume target VM

j passed from marketing is achieved by 
producing enough of each component to assemble VM

j complete 
products. To do this, a decision variable VE

j is included to 
represent the total number of products of type j produced, and 
this value is constrained so that the manufacturing operations 
performed for each component Vjlmn are sufficient to generate 
the parts for VE

j products.  
 

E ; , ,jlmn l jm
V V j l nξ≥ ∀∑ . (6)  

 
Secondly, the total amount of time needed to execute 
manufacturing operations specified by Vjlmn must not exceed the 

amount of time Tjm allocated to product j on machine type m. If 
rlmn(xj) is a function specifying the time per unit to execute 
operation n on component l with machine m for a design with 
variables xj, this constraint can be represented as 

 

( ) E ; ,jlmn lmn j jml n
V r T j m≤ ∀∑ ∑ x . (7)  

 
Finally, Vjlmn may be greater than zero only if machine m has 
the capability to execute operation n on component l of product 
j. If glmn(xj) is a vector of constraint functions that define the 
feasibility of executing operation n on component l with 
machine m as a function of the design xj of product j, then Vjlmn 
can be greater than zero only if glmn(xj) < 0. If any constraint in 
glmn(xj) is positive, then the machine constraints are not 
satisfied by the product component, so operation n of 
component l cannot be performed on machine m, and Vjlmn must 
be exactly zero. This restriction can be represented by the 
following constraint 

 

( ) ; , , ,jlmn lmn jV j l m n≤ ∀g x 0 . (8)  
 
Taken in conjunction with the condition that Vjlmn > 0, this 
constraint ensures the specified relationship, allowing designs 
xj the freedom to be altered to meet machine constraints and 
ensuring that components are not produced on machines if the 
design does not meet machine constraints. While this constraint 
can be implemented directly, it is advisable to implement it as a 
penalty function to avoid numerical problems with the near-
colinearity of the gradients of Eq.(8) and the Vjlmn > 0 constraint 
for large values of glmn. The entire formulation for each 
engineering design subproblem is shown in Figure 3. 

3. EXAMPLE 
To demonstrate the methodology described in the previous 

section, the example from Michalek et al. (2005b) using a 
model of dial-readout scale design is extended to develop 
manufacturing models. Details of the model are consistent with 
the reference: Figure 4 shows the design variables xj used to 
define the design, Table 1 lists fixed parameters, and the case of 
four products in the product line (J = 4) is examined. The 
product characteristics observed by the customer zj include z1 = 

Table 1: Engineering design model parameters
Description Value 
y1: Gap between base and cover 0.30 in. 
y2: Minimum distance between spring and base 0.50 in. 
y3: Internal thickness of scale 1.90 in. 
y4: Minimum pinion pitch diameter 0.25 in. 
y5: Length of window 3.0 in. 
y6: Width of window 2.0 in. 
y7: Dist. top of cover to window 1.13 in. 
y8: Number of lbs measured per tick mark 1.0 lbs. 
y9: Horizontal dist. spring to pivot 1.10 in. 
y10: Length of tick mark + gap to number 0.31 in. 
y11: Number of lbs that number spans 16 lbs. 
y12: Aspect ratio of number (length/width) 1.29 
y13: Min. allow lever dist. base to centerline 4.0 in. 
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weight capacity, z2 = aspect ratio, z3 = platform area, z4 = gap 
size between dial tick marks, and z5 = size of dial numbers. The 
functions r(x) mapping x to z, and the constraints g(x) 
maintaining design feasibility are listed in Table 2. 
Additionally, the heterogeneous demand model described in the 
previous section was implemented by Michalek et al. (2005b) 
using real choice-based conjoint survey data, and the same 
model is used here in all calculations. 

The software package DFMA: Design For Manufacture 
and Assembly, by Boothroyd Dewhurst (DFMA, 2004) was 
used to provide estimates of the manufacturing steps involved 
in producing the components of dial readout scales. For the 
example, the scope was limited to the manufacture of five 
components: l = 1, the cover; l = 2, the base; l = 3, the (two 
identical) long levers; l = 4, the (two identical) short levers; and 

l = 5, the rack. There are two of each lever and one of each 
other component in each complete scale, so the number of 
components per unit produced ξl = {1, 1, 2, 2, 1} for l = {1, 2, 
3, 4, 5} respectively. Each of these components is produced 
with stamping machines. The cover and base require two 
operations (N1 = N2 = 2): a shearing operation (n = 1) followed 
by a bending operation (n = 2), each performed with a 
compound die. The levers and rack are each produced with a 
single shearing step in a progressive die (N3 = N4 = N5 = 1).  

Material cost cS
l was also estimated per part. For simplicity, 

the unit material cost was treated here as constant, rather than 
as a function of the component dimensions; however, inclusion 
of unit material cost as a function of design dimensions is 
straightforward if data are available. Since the unit material 
cost is treated as constant in this case, it need not be passed 
back and forth as a target, so the material cost calculation is 
included directly in the marketing subproblem to reduce 
computational load. Finally, the force required to perform each 
operation was estimated based on the machine suggestions 
made by the software, along with the time to load and unload 
each part. These data are summarized in Table 3. 

A set of nine available machine alternatives (M = 9) was 
compiled using the software, which provided information on 
machine dimensions, force capacity, speed, and operating costs. 
Machine purchase cost estimates were obtained through 
informal discussions with Minster Machine Company. These 
machine data are summarized in Table 4.  

Given these data, the rate function rlmn can be calculated 
for each operation n on each machine m for each component l 
by dividing the number of strokes required per part by the 
machine press speed and adding the load / unload time. In 
general, rlmn may be a function of the design variables xj; 
however, for simplicity in this example it is taken to be 

Table 2: Constraint and response functions
Formula Description 

( )( )
( ) ( )( )

6 9 10 1 2 3 4
1

11 1 3 4 3 1 5

4 x x x x x x x
z

x x x x x x x
π + +

=
+ + +

 Weight Capacity (lbs) 

2 14 15z x x=  Platform aspect ratio  

3 14 15z x x=  Platform Area (in2) 

4 1 2 1z x zπ=  Size of gap between 1-lb 
interval marks (in) 

( )( )( )
( ) ( )( )

1
11 1 12 102

5
12 11 1

2 tan
1 2 tan

y z x y
z

y y z
π

π
−

=
+

 Size of number (length, in) 

( ) ( )1
1 8 14 1 12 7 7 9 102: 2g x x y x y x y x≥ − − + − − −  Sufficient rack length to 

span pivot and pinion 

( )22 2 1
2 1 2 14 1 7 152: ( ) ( 2 )g x x x y x x y+ ≤ − − + −  Long lever attaches to top 

edge of scale 

3 7 9 11 8 14 1: 2g x y x x x y+ + + ≤ −  Rack shorter than base when 
pivot is rotated 90 degrees  

( )4 3 4 14 1: 2g x x x y+ ≤ −  Short lever length less than 
base length 

5 5 1 2:g x x x≤ +  Lever joint location less than 
lever length 

6 12 15 1: 2g x x y≤ −  Dial diameter less than base 
width 

7 12 14 1 7 9: 2g x x y x y≤ − − −  Dial diameter less than base 
length minus spring plate 

( ) ( )2 22
8 14 1 7 13 1 2: 2g x y x y x x− − + ≤ +  Long lever at least y13 away 

from centerline for balance 
 

Figure 4: Design variables of the dial-readout scale

 
Table 3: Component and operation data 
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1 Cover 1 $2.35 1 Shearing + Hole 100 Compound Die 3 8.35
2 Bending 100 Compound Die 3 8.80

2 Base 1 $1.93 1 Shearing + Hole 100 Compound Die 3 8.32
2 Bending 100 Compound Die 3 8.71

3 Long Lever 2 $0.28 1 Shearing 60 Progressive Die 1 NA
4 Short Lever 2 $0.16 1 Shearing 32 Progressive Die 1 NA
5 Rack 1 $0.07 1 Shearing 45 Progressive Die 1 NA

Table 4: Machine characteristics
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1 Minster P2H-160 33.5 63 180 40 $22.10 $25.00 $335
2 Minster P2H-100 26 48 112 60 $19.40 $25.00 $250
3 Minster OBI #4F 9 12 32 90 $16.30 $25.00 $75
4 Minster OBI #5F 12 16 45 85 $16.70 $25.00 $60
5 Minster OBI #6F 14 18 60 75 $17.40 $25.00 $90
6 Minster OBI #7F 14 19 75 70 $18.00 $25.00 $100
7 Minster E2-200 36 60 200 36 $22.80 $25.00 $200
8 Minster E2-300 42 96 300 36 $26.70 $25.00 $300
9 Minster E2-400 48 108 400 36 $30.60 $25.00 $400
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constant with respect to xj. The time period of interest T is set 
to one year, encompassing 52 weeks, five days per week 
without holidays, and eight hours per day, for a total of 
7,488,000 seconds of machine time per machine purchased. It 
is assumed that all machines are purchased in full at the 
beginning of the year for production during that year only. This 
is quite conservative, since most machines in industry are 
purchased with multiple years of production in mind; however, 
changing time periods or including machine leasing or resale 
options could be accommodated using financial discounting. 
The machine constraints glmn are of two types: (1) ensure that 
the component is small enough to fit in the machine bed, and 
(2) ensure that the machine has sufficient force capacity to meet 
the component force requirements. Both of these conditions are 
enforced only for cases where Vjlmn > 0, as described 
previously. Specifically, the machine bed constraints applied to 
the cover, base, long lever, short lever, and rack respectively 
specify that  

 
13 14

13 1 14 1

1 2

3 4

8

1: , bed width
2 : 2 , 2 bed width
3: bed width
4 : bed width
5 : bed width

l x x
l x y x y
l x x
l x x
l x

= ≤
= − − ≤
= + ≤
= + ≤
= ≤

 
(9)  

 
Additionally, force capacity constraints specify that the 
machine force is greater than or equal to the component 
required force for each component, operation, and machine, 
using the relevant data from Table 3 and Table 4. 

4. RESULTS 
The ATC hierarchy was solved using as a starting point the 

solution from Michalek et al. (2005b) with a value of zero for 
all machine purchases κm and time allocations (TM

jm, TD
jm, and 

TP
jm). The solution was obtained in three stages: First the relaxed 

problem (omitting Eq.(4) and Eq.(8)) was solved. Next, the 
penalty functions representing the machine feasibility 
constraints in Eq.(8) were added to the objective function with 
a penalty coefficient iteratively increasing, gradually forcing 
the solution out of infeasible regions to achieve the machine-
feasible solution. Finally, the penalty function forcing κ to 
integer values (Eq.(4)) was added to the objective function with 
a penalty coefficient iteratively increasing, gradually forcing κ 

to integer values and achieving the final feasible integer 
solution. The final resulting solution is not necessarily the 
global optimum, but it is a local optimum near the solution to 
the relaxed problem. Table 5 shows a comparison of the 
revenue, cost, profit, and machine purchase variables of the 
relaxed and final optimal solutions. The profit of the final 
integer solution is lower than the relaxed solution, as expected, 
since the relaxed solution is an upper bound on the final integer 
solution. However, the resulting profit of the final solution is 
within 0.4% of the relaxed solution; therefore, the result is at 
least a good engineering solution of high quality, and likely a 
global solution. In the relaxed solution the κ variables are real-
valued, while in the final solution they are integers. Although 
the final solution in this case appears to be simply a rounding of 
the relaxed solution for each value of κ, this simple relationship 
does not hold in general. 

The products that result from this optimization are shown 
in Table 6, along with their predicted market shares, production 
volumes, and selling prices. Differences in design variables 
between these results and those in the Michalek et al., (2005b) 
occur because the design space in this problem does not map 
one to one with the product characteristics space, and multiple 
product designs exist that yield identical product 
characteristics. The specific design found by the algorithm on 
any given iteration is a matter of chance, but the coordination 
ensures that at least one feasible design exists that can attain the 
target product characteristics. Additionally, in this example, the 
machine constraints related to part dimensions are not binding, 
so the product characteristics shown in Table 6 are not 
compromised. The design itself is robust to dimensional 
constraints on many of its components because, for example, 
constraints on the length of the levers can be compensated for 
by changing the dimensions of other components in order to 
achieve the same product characteristics. In other case studies 

Table 5: Comparison of the relaxed solutions with the 
final solution 

Relaxed Soln Final Soln
Revenue ($Mil) $95.5 $94.8

Cost ($Mil) $28.1 $27.6
Profit ($Mil) $67.4 $67.1

κ 1 0.0 0.0
κ 2 23.3 23.0
κ 3 0.2 0.0
κ 4 0.9 1.0
κ 5 0.8 1.0
κ 6 0.0 0.0
κ 7 0.1 0.0
κ 8 0.0 0.0
κ 9 0.0 0.0  

Table 6: Product line design solution

1 2 3 4
V M

j (mil) 1.23 1.01 0.91 0.57
Share 25% 20% 18% 12%

z1 292 258 200 258
z2 0.980 1.155 0.924 0.975
z3 140 123 106 140
z4 0.103 0.119 0.121 0.115
z5 1.22 1.37 1.30 1.33
p $24.13 $25.40 $24.57 $30.00
x1 11.78 0.125 9.351 9.846
x2 0.192 11.5 0.809 2.149
x3 3.364 5.981 5.745 3.778
x4 4.754 2.264 2.951 5.068
x5 0.125 0.186 0.125 0.135
x6 147.88 1.00 117.22 97.36
x7 0.50 0.50 0.50 0.50
x8 5.65 5.25 3.66 4.48
x9 0.353 0.766 0.478 0.345
x10 1.052 1.432 0.741 1.349
x11 1.696 1.776 1.696 1.878
x12 9.515 9.721 7.714 9.422
x13 11.71 11.92 9.914 11.68
x14 11.95 10.32 10.73 11.98

PRODUCT (j )
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where the design is less robust, machine constraints could 
influence the product characteristics significantly. 

The variables associated with machine purchase and 
manufacturing allocation are provided in Table 7. In the table, 
the Vjlmn terms are shown in millions of units and the Tjm terms 
are shown in millions of seconds. In the final solution, the time 
available from purchased machines is allocated to the four 
products via the Tjm terms, and each product allocates its 
components to the most cost-effective available machines via 
the Vjlmn terms.  

5. CONCLUSIONS 
This paper has presented a method to coordinate 

manufacturing investment decisions with marketing and 
product design decisions to achieve jointly optimal product line 
solutions. The approach aims to facilitate communication in 
concurrent engineering at design stages where parametric 
models can be called upon in order to resolve tradeoffs toward 
the pursuit of firm-level objectives. The modularity of the 
ATC-based methodology allows additional considerations, such 
as the manufacturing subproblem introduced in this paper, to be 
added to an existing hierarchy without starting from scratch. 
This modularity provides an opportunity for models in various 
disciplines to be built and used when available and appropriate 
to the scope of interest with minimal restructuring.  

Manufacturing decisions typically involve a number of 
inherently discrete decisions, such as how many machines to 
purchase. In this formulation, these discrete decisions were 

represented by relaxing the problem to a continuous space and 
imposing constraints to enforce solutions with discrete values; 
however, the formulation creates multiple local minima, and 
gradient-based search algorithms guarantee only local 
optimality. The strategy employed is to solve the relaxed 
problem and then impose interior penalty functions to achieve a 
feasible solution close to the relaxed solution. In the example 
this strategy was successful, resulting in a final solution with a 
profitability within 0.4% of the relaxed solution; however, the 
application highlights the need for further research to extend 
the ATC methodology to problems with discrete variables so 
that mixed-integer programming can be utilized and more 
complex problems involving manufacturing can be solved.  

The example presented was examined only for the case of 
four products in the product line. Determination of the optimal 
number of products in the line requires a comparison of 
separate optimization runs for each case, as in Michalek et al. 
(2005b); however, the manufacturing formulation presented 
here does not allow determination of the optimal number of 
products because tooling costs, such as the purchase of dies, 
and setup costs are not included in the formulation. Without 
these costs represented, the model predicts that more product 
variety is always better. It is left for future research to 
incorporate setup costs and tooling costs into the model. Also, 
the example examines only the case of a single producer; 
however, competitor products can be included in the existing 
demand model to test other scenarios, and competitive effects 
can be studied using game theory as in Michalek et al. (2004). 

Finally, there exist alternative ways to decompose the 
marketing, engineering design, and manufacturing subproblems 
in this example. The formulation presented was designed to 
allocate as much complexity as possible to the engineering 
design subproblems in order to improve scalability to lines of 
many products: With the inclusion of many products, the 
marketing and manufacturing subproblems grow in 
dimensionality; however, each engineering design subproblem 
remains constant in size. Scalability is also supported because 
the relaxed manufacturing subproblem is linear in constraints 
and quadratic in the objective function. Additionally, choice of 
decomposition was made to minimize the number of variables 
shared among subproblems, improving computational 
properties. However, a model-based methodology similar to 
Michelena and Papalambros (1997) for determining how to 
decompose systems with multiple products for best scalability 
would be helpful. 

This application of ATC has the potential to bridge gaps 
between design, manufacturing, and business perspectives of 
product development and production. The current model is 
static in the sense that market share is a deterministic function 
of the product characteristics and price, and demand does not 
vary over the time period in question. A number of potential 
extensions are possible such as modeling market dynamics by 
considering investment time (Georgiopoulos et al., 2002) and 
demand fluctuation (Asl and Ulsoy, 2002), or by including 
considerations of product life cycle economic modeling (Birge 
et al., 2000) and machine reconfiguration (Koren et al., 1999).  
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Table 7: Product line manufacturing investment 
and allocation solution 

j l n 1 2 3 4 5 6 7 8 9
κ 0 23 0 1 1 0 0 0 0

1 0.00 56.77 0.00 2.50 1.97 0.00 0.00 0.00 0.00
2 0.00 46.60 0.00 2.05 1.60 0.00 0.00 0.00 0.00
3 0.00 42.19 0.00 1.83 1.46 0.00 0.00 0.00 0.00
4 0.00 26.66 0.00 1.12 0.92 0.00 0.00 0.00 0.00
1 1 1 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 1 2 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 2 1 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 2 2 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 3 1 0.00 0.04 0.00 0.00 2.41 0.00 0.00 0.00 0.00
1 4 1 0.00 0.08 0.00 2.32 0.05 0.00 0.00 0.00 0.00
1 5 1 0.00 0.01 0.00 1.21 0.00 0.00 0.00 0.00 0.00
2 1 1 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1 2 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2 1 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2 2 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 3 1 0.00 0.04 0.00 0.00 1.97 0.00 0.00 0.00 0.00
2 4 1 0.00 0.08 0.00 1.92 0.01 0.00 0.00 0.00 0.00
2 5 1 0.00 0.01 0.00 0.98 0.02 0.00 0.00 0.00 0.00
3 1 1 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 1 2 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 2 1 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 2 2 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 3 1 0.00 0.05 0.00 0.00 1.78 0.00 0.00 0.00 0.00
3 4 1 0.00 0.08 0.00 1.69 0.05 0.00 0.00 0.00 0.00
3 5 1 0.00 0.01 0.00 0.90 0.00 0.00 0.00 0.00 0.00
4 1 1 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 1 2 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 2 1 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 2 2 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 3 1 0.00 0.04 0.00 0.00 1.11 0.00 0.00 0.00 0.00
4 4 1 0.00 0.08 0.00 1.03 0.04 0.00 0.00 0.00 0.00
4 5 1 0.00 0.01 0.00 0.56 0.00 0.00 0.00 0.00 0.00

MACHINE (m )

T jm
(million

sec.)

V jlmn
(million
units)
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