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A B S T R A C T

When planning for a new manufacturing system to produce several products over a planning horizon,

firms usually face an important decision regarding how to select the optimal quantity and portfolio of

product-dedicated and flexible capacities. Flexible systems may alleviate the unfavorable effects of

demand uncertainties, however they require higher investment costs compared to dedicated systems. In

this paper, we formulate the optimal capacity selection problem and perform numerical studies to

provide insights on how these decisions are affected by the investment costs, product revenues, demand

forecast scenarios and volatilities over the planning period.

� 2009 CIRP.
1. Introduction

In this paper, we consider optimal capacity investment deci-
sions for a firm that produces several products over a planning
horizon. This decision, which has long-term economic conse-
quences, addresses two major issues: (1) how much capacity to
build? (2) whether to invest in dedicated or flexible systems, or a
portfolio consisting of both dedicated and flexible systems. As
defined in [1,2], flexible capacities ‘‘possess the ability to change
over to produce a set of products very economically and quickly’’.
Therefore, flexible systems may alleviate unfavorable effects of
demand uncertainties. However, the versatility to produce multi-
ple products often requires higher investment costs compared to
dedicated systems that can only produce one type of product [3].

In this study we formulate the optimal capacity investment
problem and provide insights on how the investment decisions are
influenced by (1) relative investment costs of dedicated and
flexible systems, (2) marginal revenues from each product, (3)
demand volatility during the planning horizon. Intuitively, we
expect flexible capacities to be favored more as their investment
costs are closer to those of dedicated systems and when profit
margins and market volatilities are high.

There is a rich literature on optimal capacity investment and an
extensive survey on the topic has been provided in [4]. Several
studies consider both initial investments and optimal capacity
adjustments over time [5,6]. However, as argued in [7], continuous
capacity adjustments may not be possible in many settings due to
irreversibilities. Therefore, investing in the optimum quantities
and types of capacity at the beginning of a planning horizon is
crucial for profitability in the long run. There exist many works
showing the economic benefits of employing flexible systems.
Particularly, Van Mieghem [8] studies optimal investment in
dedicated and flexible capacities under uncertainty and shows
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how several problem parameters including investment cost and
demand uncertainties effect optimal investment decisions.

The major contribution of our work is extending the analysis of
optimal capacity investments to multiple selling periods, allow-
ing nonstationary demand processes based on product life cycles,
and limiting capacity purchases by discrete increments to study
the effects of various demand and cost parameters. As discussed in
[4], these extensions present analytical difficulties and have
received relatively little attention. Other studies show the value of
investing in flexible systems by adapting models from the theory
of options in financial markets [2,7] and by studying the effects of
uncertainties in future product prices [9,10].

The paper is organized as follows. In Section 2, we present the
problem setting and provide a mathematical model of the capacity
investment problem. In Section 3, we study a range of numerical
results and discuss how optimal investment decisions are affected
by factors such as investment costs, product revenues and demand
volatilities. We present concluding remarks in Section 4.

2. Model description and problem formulation

In this section, we first present the main modeling assumptions
on product demand and manufacturing capacity. We then provide
a mixed-integer programming formulation for the capacity inves-
tment problem.

2.1. Product demand

We consider a manufacturing firm that produces two types of
products over a time horizon consisting of several periods.
Marginal revenues of pA and pB are received for each unit of type
A and type B product, respectively.

Demands for each product at each period are uncertain. For
capacity planning purposes, the firm employs demand forecasts for
each type of product. These forecasts lead to probability density
functions for product demands across periods. As a brief example,
if the forecast for the sales of a product is: 100% confidence that at
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Table 1
An example of discrete probability density function for product demand.

Product demand Probability density function

300,000 0.3

400,000 0.5

500,000 0.2
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least 300,000 units will be sold, 70% confidence that at least
400,000 units will be sold, and 20% confidence that 500,000 units
will be sold, then the discrete probability density function is given
in Table 1.

As future periods possess higher levels of uncertainty, the
forecast accuracy decreases with time. Therefore, in our analysis,
we will assume higher demand variances for more distant time
periods.

In this study, we consider two demand scenarios. In the first
scenario, a new product, designated as product B, is gradually
replacing an existing product A. Fig. 1 illustrates typical demand
distributions for the products where ct

i and d̄
t

i denote, respectively,
the probability density function and mean demand in period t for
product i, i = A, B. We let d = (dA, dB) denote the realization of all
product demands, where dA ¼ ðd1

A; d2
A; d3

AÞ and dB ¼ ðd1
B; d2

B; d3
BÞ. In

the second scenario we consider the case where both products
have highly fluctuating and negatively correlated demand.
Specifically, we study a problem instance where product A has
high demand in periods 1 and 3 and low demand in period 2, and
product B has low demand in periods 1 and 3 and high demand in
period 2.

2.2. Manufacturing capacity

The manufacturing capacity investment decision is carried out
at the beginning of the planning horizon when only forecasts for
product demands are available.

Two major issues should be addressed when planning for the
manufacturing system: (1) how much capacity to build? (2)
whether to invest in dedicated or flexible capacity, or a
combination of both. We let k = (kA, kB, kAB) denote the firm’s
capacity investment decision where kA, kB, kAB are the investments
in dedicated capacities for products A and B and the flexible
capacity, respectively.

A dedicated capacity costs less than its flexible counterpart.
Furthermore, flexible capacity is economically viable only if it costs
less than the sum of the costs of dedicated capacities. Letting
c = (cA, cB, cAB) denote the investment costs per unit capacity, we
therefore assume cA,cB � cAB � cA + cB.

As one of the main objectives of this study is to provide insights
on how the relative costs of dedicated and flexible capacities
influence investment decisions, we introduce the term ‘‘flexible
premium’’, denoted by f, and defined as the additional cost of a
unit of flexible capacity compared to that of a dedicated capacity.
For example, a flexible premium of 40% indicates that a unit of
flexible capacity costs 40% more than a unit of dedicated capacity.
Fig. 1. Demand distributions for products A and B for a planning horizon of three

periods.
We follow a similar capacity investment cost structure as
presented in Koren et al. [3] and assume that both dedicated and
flexible capacities are purchased in discrete batches where the
increments of the dedicated capacity are much larger than that of
the flexible capacity. In practice, firms may incur additional costs
to simultaneously operate and maintain dedicated and flexible
systems. Therefore, we apply lower bounds on capacity purchases;
a certain type of capacity below the bound will not be purchased.

We let kj 2 {0,Sj} where Sj = {kj + wjdjjwj 2 Z+} for j = A, B, AB
denote the feasible set of capacity selections for each type of
manufacturing system where kj and dj denote the minimum
capacity purchase and capacity increment sizes, respectively. Fig. 2
represents an example cost structure for dedicated and flexible
capacity investments.

2.3. Problem formulation

The sequence of events is as follows: at the beginning of the
planning horizon, the firm first makes a strategic investment
decision on the quantity and types of manufacturing systems to
purchase. Once the initial investment decisions are given, the firm
continually makes operating decisions every period on how to
allocate its resources in the most profitable way across products.

We first consider the operating decision stage, which is a multi-
period extension to the model given in [8]. The result of the
following optimization problem, R(d,k), depicts the maximum
revenue that can be achieved for a given capacity investment
decision k, and for any realization of product demands d over the
planning horizon.

Rðd;kÞ ¼max
x;y

XT

t¼1

bt�1
pAðxt

A þ yt
AÞ þ pBðxt

B þ yt
BÞ

� �

s:t ðaÞ xt
A � kA 8 t ¼ 1; :::; T

ðbÞ xt
B � kB 8 t ¼ 1; :::; T

ðcÞ yt
A þ yt

B � kAB 8 t ¼ 1; :::; T
ðdÞ xt

A þ yt
A � dt

A 8 t ¼ 1; :::; T
ðeÞ xt

B þ yt
B � dt

B 8 t ¼ 1; :::; T

(1)

In the above optimization problem, the decision variables xt
A

and xt
B denote, respectively, how many units of dedicated capacity

A and B are utilized to fill period t demand, whereas the decision
variables yt

A and yt
B denote the optimal allocation of the flexible

capacity between products. In addition, b is the discount factor per
period. Constraints (a)–(e) guarantee that the production quan-
tities within a period do not exceed available capacity and are
bound by the current period demand.

Having obtained the optimal production quantities under a given
capacity choice and demand realizations, we now write the first
stage problem of determining the optimal capacity investments, k.

max
k

Ed Rðd;kÞð Þ � c � k0 (2)

In the above formulation, Ed(R(d,k)) is the expected value of the
operating revenue where the expectation is taken over demand
distributions and c�k0 represents the total investment costs. As was
described in the previous subsection, we have kA 2 {0,SA} where
SA = {kA + wA�dAjwA 2 Z+} with kB 2 {0,SB} and kAB 2 {0,SAB} defined
similarly as the feasible capacity choices.

3. Numerical results

In this section, we use the mathematical model described
earlier to numerically explore how investment costs, product
revenues and demand volatilities affect optimal capacity invest-
ment decisions.

3.1. Optimal capacity investment

In order to analyze the effects of the relative investment costs
on optimal capacity investment decisions, we first consider a base
case constructed by the following problem parameters. We assume



Fig. 2. Capacity investment cost structure. Fig. 4. The portfolio of flexible and dedicated capacities.

Fig. 5. Total capacity purchase and its constituents.
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demands for products A and B generate revenues of pA = pB = 75
and, for a 3-period horizon, they are characterized by triangular
distributions with mean values (600, 350, 100) and (125, 450, 700),
and standard deviations (50, 70, 70) and (25, 70, 70). In terms of
investment costs, we use cA = cB = 100 and vary the unit cost for the
flexible capacity from 100 to 200 corresponding to a flexible
premium of 0–100%. Finally we assume a discount factor of b = 0.8.

Fig. 3 shows profits obtained from three different investment
strategies: (1) dedicated capacity only, (2) flexible capacity only,
and (3) a portfolio consisting of both dedicated and flexible systems.

Noting that the strategies of investing in only dedicated or
flexible systems are special cases of investing in a portfolio, we
observe that a portfolio strategy yields profits at least as much as
those from investing in pure flexible or dedicated systems.
Furthermore, we observe three distinct regions in the above
figure. In region I, the optimal capacity portfolio converges to the
flexible only strategy. Similarly, in region III, the optimal portfolio
converges to the dedicated only strategy. In region II however, a
portfolio strategy results in strictly higher profits.

In summary, there exist lower and upper bounds, F0 and F̄0, on the
flexible premium, f such that the optimal policy is to invest in only
flexibility capacity if f < F0, only dedicated capacity if f > F̄0 and a
portfolio of dedicated and flexible capacities if F0 � f � F̄0. For the
base case discussed above, we note that F0 = 10% and F̄0 ¼ 80%.

Fig. 4 depicts the quantities of capacity purchases that lead to
the optimal profits shown in Fig. 3. Specifically, we observe that as
the unit cost for the flexible capacity increases, a portfolio
consisting of gradually increasing share of dedicated capacities
becomes optimal.

Fig. 5 illustrates both the total capacity investment and its
constituents in terms of each capacity type. We see that the total
capacity may be higher or lower as flexible premium increases, a
result partly due to the discreteness and lower bounds applied to
capacity purchases.

3.2. Product revenue

Next, we consider the effects of product revenues on optimal
capacity investments. Fig. 6 below illustrates the capacity
Fig. 3. Profits resulting from the investment strategies.
purchases for a problem instance with pA = pB = 60 while all
remaining parameters are set identical to their values in the base
case.

As implied by a comparison of Figs. 4 and 6, lower product
revenues lead to an increase in the pure flexible and dedicated
capacity regions (regions I and III) while the range where a
portfolio strategy is beneficial (region II) is reduced. In other words,
if we let FR and F̄R denote the new lower and upper bounds on
flexible premium for low revenue products, we have FR � F0 and
F̄R � F̄0. In this example, we have FR = 15% and F̄R ¼ 50%.

Conversely, high product revenues enlarge the range over
which the optimal strategy is of a portfolio type. As product
revenues get higher, it is more profitable for firms to increase
production in order to reduce missed demand opportunities. Since
dedicated capacity costs less, it makes sense to build the increased
level of total capacity partially by dedicated systems. On the other
hand, employing flexible capacity is also crucial as it allows
allocating capacity where needed and hence enables a higher
demand fill rate and revenues in the presence of demand
uncertainties. Therefore a portfolio of flexible and dedicated
systems is optimal over a larger flexible premium range.

Fig. 7 illustrates the optimal investment strategies over a range
of product revenues. We again note that higher product revenues
Fig. 6. The portfolio of flexible and dedicated capacities based on low product

revenue.



Fig. 8. The portfolio of flexible and dedicated capacities based on low demand

uncertainty.

Fig. 7. Effect of product revenue on optimal capacity investment strategies. Fig. 9. Total capacity purchase and its constituents for high market volatility across

periods.
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lead to a wider region of portfolio-type investments. The figure also
shows that for low revenues, if it is profitable to invest in capacity,
it is optimal to invest in pure flexible systems since dedicated
systems may not be profitable alternatives.

3.3. Demand variance

We now analyze the effect of demand variance on optimal
capacity investment decisions. We first consider a problem
instance where the demands within a period have less uncertainty.
We reduce the standard deviation and set it to 25 for each product
across all periods.

Fig. 8 shows that as product demands for each period have less
uncertainty, the value of the pure flexible investment strategy
diminishes. In other words, when market is more predictable, an
optimal investment strategy favors dedicated systems.

Finally, we consider the second demand scenario described in
the model description where demands across periods show high
volatility. We set the mean demand values for products A and B as
(600, 150, 600) and (125, 600, 150), respectively, with standard
deviations as given in the base case.

Fig. 9 displays the constituents of the optimal capacity
investments. In the case of high demand volatility across periods,
we observe that optimal capacity investment favors flexible
systems. In this example, the portfolio region consists of solely one
type of dedicated system as the flexible system provides the
capacity to produce the other item.
4. Conclusions

In this paper, we studied optimal capacity investment strategies
for firms producing two products over a planning horizon during
which product demands possess uncertainties.

Through a variety of numerical examples, we showed how a
range of investment cost parameters, product revenues and
demand uncertainties influence the optimal strategy to whether
invest in pure flexible, pure dedicated or a portfolio of both types of
systems. Our analysis indicates that optimal investment strategies
include a larger share of flexible systems under low flexible
investment cost, high product revenues, and high demand
uncertainties within and across periods.
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