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Mixed-model assembly lines have been recognized as a major enabler to handle product
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variety. However, the assembly process becomes very complex when the number of prod-
uct variants is high, which, in turn, may impact the system performance in terms of
quality and productivity. This paper considers the variety induced manufacturing com-

plexity in manual mixed-model assembly lines where operators have to make choices for
various assembly activities. A complexity measure called “operator choice complexity”
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(OCC) is proposed to quantify human performance in making choices. The OCC takes an
analytical form as an information-theoretic entropy measure of the average randomness
in a choice process. Meanwhile, empirical evidences are provided to support the pro-
posed complexity measure. Based on the OCC, models are developed to evaluate the

complexity at each station and for the entire assembly line. Consequently, complexity can
be minimized by making system design and operation decisions, such as error-proof
strategies and assembly sequence planning. [DOL: 10.1115/1.2953076]

1 Introduction

Traditional mass production was based on dedicated assembly
lines where only one product model was produced in large quan-
tities. Such systems can achieve high productivity by using prin-
ciples of economies of scale and work division among assembly
stations. However, in today’s marketplace, where customers de-
mand high product variety and short lead times, mass customiza-
tion has been recognized as a new paradigm for manufacturing
[1,2]. Mass customization promises individualized products at
mass production cost. As a result of such paradigm change, as-
sembly systems must be designed to be responsive to customer
needs while at the same time achieving mass production quality
and productivity. Mixed-model assembly lines (MMALSs) have
been recognized as a major enabler to handle increased variety. A
MMAL typically takes the form of a flow line. The topics of
effectively assigning tasks to stations and balancing the lines for
multiple product types have been active research areas for MMAL
in recent years [3].

Various industries are practicing MMALS. The variety of prod-
ucts offered in these lines has increased dramatically over the past
decade. For example, in a typical automobile assembly plant, the
number of different vehicles being assembled can reach tens of
thousands in terms of the possible build combinations of options.
In fact, BMW claims that “Every vehicle that rolls off the belt is
unique” and the number of possible automobile variations in the
BMW 7 Series alone could reach 10'7.

Such an astronomical number of build combinations undoubt-
edly presents enormous difficulties in the design and operation of
the assembly systems. We still take automobile assembly as the
example. It has been shown by both empirical and simulation
results [4—6] that increased vehicle product variety has a signifi-
cant negative impact on the performance of the mixed-model as-
sembly process, for example, on quality and productivity. Such
impact can result from assembly system design as well as people
performance under high variety. The effect from the latter persists
since only limited automation can be implemented in the automo-
bile final assembly [7,8]. Thus the questions presented here are
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twofold: how variety impacts people and system performance, and
how to design assembly systems and organize production to allow
high product variety without sacrificing quality and productivity.

One of the possible approaches to assessing the impact of prod-
uct variety on manufacturing system performance is to investigate
how product variety complicates the mixed-model assembly pro-
cess. However, only limited research has been done on defining
manufacturing system complexity. For example, MacDuffie et al.
[5] established an empirical relationship between complexity and
manufacturing system performance. They defined product mix
complexity by looking at product variety (product mix and its
structure) in assembly plants. According to the differences in the
levels of product variety, three types of product mix complexity
were defined in terms of empirical scores: model mix complexity,
part complexity, and option complexity. By statistical analysis, a
significant negative correlation between the complexity measures
and the manufacturing performance was found. The result was
based on the data from 70 assembly plants worldwide that partici-
pated in the International Motor Vehicle Program at MIT.

Besides empirical studies, attempts have also been made to
analytically define complexity in manufacturing. For instance,
complexity has once been associated with the amount of effort
needed to make a part. The effort was quantified by a logarithmic
function of the probability of achieving a certain geometric preci-
sion and surface quality in machining [9]. The function is widely
known as Shannon’s information entropy [10]. Similarly,
Fujimoto and Ahmed [11] defined a complexity index for assem-
bling. The index takes the form of entropy to evaluate the assem-
blability of a product. The assemblability was defined as the un-
certainty of gripping, positioning, and inserting parts in an
assembly process. Also, complexity has been extended as a mea-
sure of uncertainty in achieving the specified functional require-
ments in an axiomatic design [12].

Recently, complexity has been defined in an analytical form for
manufacturing systems as a measure of how product variety com-
plicates the process. Fujimoto et al. [13] introduced a complexity
measure based on product structure using information entropy in
different assembly process planning stages. By reducing the com-
plexity, they claimed that the impact of product variety on manu-
facturing systems could be reduced. However, the complexity
measure does not incorporate the manufacturing system character-
istics into the analysis. Deshmukh et al. [14] defined an entropic
complexity measure for part mix in job shop scheduling. The
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An illustration of a PFA and its MMAL

complexity quantifies the difficulty associated with making sched-
uling decisions for the job shop, in which several types of prod-
ucts are manufactured simultaneously. An information-theoretic
entropy measure of complexity is derived for a given combination
and ratio of the part types. However, the complexity analysis is
not applicable for a mixed-model assembly, which has a flow line
or various hybrid configurations.

In summary, there is a general agreement that (i) product vari-
ety does increase the complexity in manufacturing systems and
(i) information entropy is an effective measure of complexity.
However, in order to analyze the impact of variety on manufac-
turing complexity in mixed-model assembly systems, one has to
take into consideration the characteristics of the assembly system,
such as system configuration, task to station assignment, and as-
sembly sequences. In addition, there is a lack of understanding on
the mechanisms through which variety impacts manufacturing.

To address the above issues, this paper defines a new measure
of complexity that integrates both product variety and assembly
process information and then develops models for evaluating
complexity in multistage mixed-model assembly systems. This
paper is organized as follows. Section 2 defines the measure of
operator choice complexity, which results from the analysis of
choices and choice process in mixed-model assembly operations.
Moreover, the section also provides both theoretic and empirical
justifications for the viability of the measure. Section 3 presents
the modeling of complexity for MMALS, where models at the
station and system levels are both investigated. Additionally, the
influence of process flexibility is analyzed using numerical ex-
amples. Then potential applications for assembly system design
by using the model are suggested in Sec. 4. Finally Sec. 5 con-
cludes this paper and proposes future work.

2 Measure of Operator Choice Complexity

This section begins with a brief introduction to MMALSs. Then
it describes the choices and choice processes on the line to help
theoretically define the measure of choice complexity. The mea-
sure is then justified by results from the cognitive ergonomics
studies.

2.1 Mixed-Model Assembly Line. Figure 1 illustrates an ex-
ample of a product structure and its corresponding MMAL. The
product has three features (F;); each feature has several variants
(e.g., Vj; is the jth variant of F;). The product structure is repre-
sented by a product family architecture (PFA) [15].

The PFA illustrates all the possible build combinations of the
customized products by combining the variants of features. For
example, in Fig. 1, the maximal number of different end products
is 24 (i.e., 3X2X4). Moreover, we represent the product mix
information by a matrix P, where p;; is the demand (in percent-
age) of the jth variant of the ith feature. For instance, the P matrix
for the product in Fig. 1 is the following:
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pu P2 Piz O
P=|py pp 0 O (1)
P31 P32 P33 P3s

Each row corresponds to the demand (in terms of mix ratio) of
one feature, satisfying X;p;;=1, Vi.

In the mixed-model assembly process, one of the variants from
every feature is selected and assembled sequentially along the
flow of the assembly line. For example, as depicted in Fig. 1, Vi,
is chosen for Fy, Vy, for F,, and V3, for F5. Quite often, this
assembly process is accomplished manually. Operators at every
station must make correct choices among a number of alterna-
tives. The choices include choosing the right part, tool, fixture,
and assembly procedure for the variant.

2.2 Choices and Choice Processes. At each assembly station,
the operator must choose the correct part from all possible vari-
ants according to the customers’ order. The specification of the
order is usually written on a production tag/manifest attached on
the partially completed assemblage. This process of selecting the
right part continues throughout the day. To better understand the
process, we call it the choice process.

The choice process consists of a sequence of choices with re-
spect to time. It can be modeled as a sequence of random vari-
ables, each of which represents choosing one of the possible al-
ternatives. Mathematically, it can be considered as a discrete time
discrete state stochastic process {X,,r=1,2,...} on the state space
(the choice set) X, €{1,2,...,M}, where ¢ is the index of discrete
time period and M is the total number of possible alternatives
(parts) that could be chosen during each period. More specifically,
X,=m,me{l,2,...,M} is the event of choosing the mth alter-
ative during period .

In the simplest case, if the choice process is independent and
identically distributed (iid), we then use a single random variable
X (instead of X,’s) to describe the outcome of a choice. Further-
more, we know all the alternatives of X and their probabilities;
i.e., the probability of a choice taking the mth outcome is known
as p,, =P(X=m), for m=1,2,...,M. In the following discussions,
we limit ourselves by assuming iid sequences.

2.3 Operator Choice Complexity. To characterize the opera-
tor performance in making choices, we define the term operator
choice complexity (or choice complexity) as follows.

DEFINITION. Choice complexity is the average uncertainty or
randomness in a choice process, which can be described by a
function H in the following form:

M
) ==C2 pulogp,, )

m=1

H(X) =H(p1,p2, N

where C is a constant depending on the base of the logarithm
function chosen. If log, is selected, C=1 and the unit of complex-
ity is bit.

Theoretical properties. The following seven properties of the
function H as described in Ref. [10] make it suitable as a measure
of choice complexity.

(1) H is continuous in p,,; i.e., small changes in p,, should
result in only small changes in choice complexity.

(2) If p,,’s are brought closer to each other, H would increase.
Put alternatively, any change toward equalization of
P1sP2s---,py should increase H. For a given M, H is a
maximum and equal to log M when all p;’s are equal (i.e.,
1/M). In this case, H is an increasing function of M. This
case is also intuitively the most uncertain situation to make
a choice since the operator is considered to be noninforma-
tive [16].

(3) If a choice process is broken down into two successive
stages, the original H is the weighted sum of the individual
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Fig. 2 Mean choice RT as (a) a nonlinear function of the number of stimulus-response alternatives
[17] and (b) a linear function of stimulus information, or log, of the number of alternatives [18],

reprinted from Ref. [22]

values of H. For example, H(1/2,1/3,1/6)=H(1/2,1/2)
+1/2H(2/3,1/3).

(4) H=0 if and only if all the p,,’s but one are zero, this one
has the value of unity, i.e., H(1,0,...,0)=H(0,1,...,0)
=H(0,0,...,1)=0. Thus only when we are certain of the
outcome does H vanish, and there exists no choice com-
plexity. Otherwise H is positive.

(5) H does not change when an additional alternative with no
chance to happen is added into the original system.

(6) H is a symmetrical function of py,p,,...,pys; i.e., if the

probabilities of choices are permuted among the alterna-

tives, choice complexity does not change.

H is a sum of surprisal functions weighted by probability

pw’s [16]. A surprisal function log 1/p,, is defined to quan-

tify how much surprise (uncertainty) is incurred for an in-
dividual choice. The higher the probability of the incoming
alternative is, the less surprisal is incurred, and vice versa.

Thus, by weighting the surprisal with probabilities for the

choice process, we obtain the entropy that characterizes the

average randomness in the sequence. Therefore the entropy
function H possesses most of the desirable properties to be
one of the possible measures of choice complexity.

(7)

2.4 Justifications for Choice Complexity Measure. There is
a close similarity and connection between the theoretical proper-
ties of the complexity measure and the experimental results found
in human cognitive studies. The experiments were conducted to
assess human performance when making choices. Coincidentally,
information entropy was found to be one of the effective mea-
sures. The performance of human choice-making activities was
investigated by measuring average reaction times (RTs), i.e., how
quickly a person can make a choice in response to a stimulus. One
of the earliest studies was done by Merkei in 1885, described by
Woodworth [17]. In the experiment, digits 1-5 were assigned to
the fingers of the right hand and the Roman numbers I-V were
assigned to the fingers of the left hand. On any given set of trials,
the subject knew which of the set of stimuli would be possible
(e.g., if there were three possible stimuli, they might be 3, 5, and
V). Merkel studied the relationship between the number of pos-
sible stimuli and the choice RT. His basic findings are presented in
Fig. 2(a), where the relationship between choice RT and the num-
ber of alternatives was not linear.

This relationship in Fig. 2(a) has been further studied by a
number of researchers since Merkel’s original observations.
Among them, the most widely known one was Hick [18]. He
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discovered that the choice RT is linearly proportional to the loga-
rithm of the number of stimulus alternatives if all the alternatives
are equal (see Fig. 2()), i.e.,

Mean choice RT = a + b[log, n] (3)

where n is the number of stimulus-response alternatives, and a
and b are constants, which can be determined empirically by fit-
ting a line to the measured data. This relation came to be known
as Hick’s law, which was regarded as one major milestone in the
area of cognitive ergonomics.

Coincidentally, the term [log, n] is exactly the information en-
tropy calculated in Eq. (2) if all the p,,’s are equal, which follows
from the experiment setting that the choice process is iid and all
the alternatives likely occur equally. The above analogy was first
discovered by Hyman [19], where he concluded that “the reaction
time seems to behave, under certain conditions, in a manner
analogous to the definition of information.”

Hyman [19] also realized that, according to Shannon’s defini-
tion of information entropy, he could change information content
in the experiment by other means. Thus, in addition to varying the
number of stimuli and letting each one of them occur in Hick’s
[18] experiment, he altered stimulus information content simply
by (i) changing the probability of occurrence of particular choices
and (ii) introducing sequential dependencies between successive
choices of alternatives (see Fig. 3). Thus, naturally enough, we
can use H to replace the [log, ] term; Eq. (3) becomes

Mean choice RT =a + bH (4)

Because of the significance of this generalization, Hick’s law is
also referred to as the Hick—Hyman law.

The H term in Eq. (4) is one of the variants of Shannon’s
information entropy [10] in the communication systems study.
Thus, a fundamental assumption behind this analog is that the
mental process of a human being is modeled as an information
transmission process. In fact, this assumption is confirmed by the
recent research in cognitive ergonomics on the queuing network
modeling of an elementary mental process. Liu [20] suggested
that at the level of mean RTs, a continuous-transmission fork-join
network demonstrates the same logarithmic behavior as that of the
experimental results in the Hick—-Hyman law. Hence, the legiti-
macy of applying Eq. (4) is limited to situations where individuals
are asked to responsed promptly to a stimulus, and the decision to
be made is very simple, requiring little conscious thought. When
analyzing the mixed-model assembly process, we observe the
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Fig. 3 Choice RT for three different ways of manipulating the
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very similar situation that the line operators are asked to handle
variety in a very tight cycle time without time for deliberating
over the decisions. However, if the subjects are given more time,
the thinking process will not be as simple as merely an informa-
tion transmission. Liu [20] also reviewed a class of more sophis-
ticated queuing network models for RT.

Moreover, it was suggested in Welford [22] that the information
measure is adequate to assess human performance since it pro-
vides a valuable means of combining RT and errors (i.e., speed
and accuracy) into a single score.

Practitioners in various fields have found the information en-
tropic measure of human performance useful. One of the ex-
amples using the Hick—Hyman law in an assembly operation
analysis comes from Bishu and Drury [23]. They used the amount
of information, measured in bits, contained in a wiring assembly
task to predict task completion time. The amount of information is
a function of both the number of wires to choose from and the
number of terminals to be wired. They found that task completion
time was linearly related to the amount of information contained
in the task. Additionally, they also found that the more the infor-
mation gain was, the more likely would errors occur. That is, the
total information content increases both the task completion time
and errors. Gatchell [24] used the choice RT technique and experi-
mentally studied operator performance on part choices under part
proliferation. Her findings suggest that an operator with more part

Station 2

choices made more errors and needed more decision time.
According to both theoretical properties and empirical results,
the entropy-based quantity H is suitable to measure operator
choice complexity. Therefore, we propose to use the following

form to quantify the value of choice complexity:
Choice complexity = a(a + bH), a>0

(5)

The form is similar to that of the Hick-Hyman law. It only
differs in a positive scalar «, served as a weight to a specific
choice process. In other words, the choice complexity is positive
monotonic to the amount of uncertainty embedded in the choice
process. Since Eq. (5) takes a simple linear form with constants «,
a, and b, the only remaining part to be determined is the value of
H when evaluating complexity. By incorporating information
from product design, line design, and operation, one can develop
models and methodologies to quantify the information content in
terms of the various operator choices in a mixed-model assembly
process.

3 Models of Complexity for Mixed-Model Assembly
Lines

This section defines the operator choice complexity in the sta-
tion level by simply extending the previous definition for a single
assembly activity. Then complexity in the system level is exam-
ined after a unique propagation behavior of complexity is found.
Moreover, process flexibility and commonality are taken into ac-
count when analyzing complexity. Finally a complexity model is
proposed for multistage assembly systems.

3.1 Station Level Complexity Model. On a station, in addi-
tion to the part choice mentioned in Sec. 2, the operator may
perform other assembly activities as well in a sequential manner,
and some examples of the corresponding choices are briefly de-
scribed as follows (see Fig. 4).

1. Fixture choice: choose the right fixture according to the base
part (i.e., the partially completed assemblage) to be mounted
on as well as the added part to be assembled.

2. Tool choice: choose the right tool according to the added
part to be assembled as well as the base part to be mounted
on.

3. Procedure choice: choose the right procedure, e.g., part ori-
entation, approach angle, or temporary unload of certain
parts due to geometric conflicts/subassembly stabilities.

According to Eq. (5), we define the associated complexity at the
station as part choice complexity, fixture choice complexity, tool
choice complexity, and assembly procedure choice complexity.
All these choices contribute to the operator choice complexity.

Without loss of generality, we number the sequential assembly

Station 3

Station 1
System
O
Station
Level

---1 Part Choice
---] Fixture Choice
---1 Tool Choice

| Assembly Procedure Choice

Fig. 4 Choices in sequential assembly activities at one station
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Fig. 5 Complexity propagation scheme

activities in Fig. 4 from 1 to K and denote C; as the total com-
plexity of station j, which is a weighted sum of the various types
of choice complexity at the station,

K
Cj= diads+biHY, of>0, k=12,...k  (6)
k=1

where ajf are the weights related to the task difficulty of the kth
assembly activity at station j, d®s and b*’s are empirical constants
depending on the nominal human performance similar to that of
the choice RT experiments, and H]; is the entropy computed from
the variant mix ratio relevant to the kth activity at station j. For
simplicity, we assume that af:O and b}‘:l ,Vj,k. Then Eq. (6)
reduces to

Ci= Eaka >0, k=1,2,....K (7)

7

3.2 Propagation of Complexity. By Eq. (7), the complexity
on individual stations is considered as a weighted sum of com-
plexities associated with every assembly activity. Among them,
some activities are caused only by the feature variants at the cur-
rent station, such as picking up a part, or making choices on tools
for the selected part. The complexity associated with such assem-
bly activity is called feed complexity. However, the choice of fix-
tures, tools, or assembly procedures at the current station may
depend on the feature variant that has been added at an upstream
station. This particular component of complexity is termed as
transfer complexity.

A formal definition of the two types of complexity is given
below. Assume a current station j:

1. feed complexity: choice complexity caused by the feature
variants added at station j

2. transfer complexity: choice complexity caused by the feature
variants added at an upstream station, i.e., station i (i pre-
cedes j, denoted as i <)

Transfer complexity exists because the feature variants added on
the previous station i may affect the process of realizing the fea-
ture at station j, causing tool changeovers, fixture conversions, or
procedure changes.

The propagation behavior of the two types of complexity is
depicted in Fig. 5, where for station j, the feed complexity is
denoted as Cj; (with two identical subscripts) and the transfer
complexity is denoted as C;; (with two distinct subscripts to rep-

Fixture Choice - Cy;

resent the complexity of station j caused by an upstream station i).
Thus the transfer complexity can flow from upstream to down-
stream, but not in the opposite direction. In contrast, the feed
complexity can only be added at the current station with no flow-
ing or transferring behavior.

Hence the total complexity at a station is simply the sum of the
feed complexity at the station and the transfer complexity from all
the upstream ones, i.e., for station j,

C,=Cy+ X, C; (8)

Vii<j

Compared with Eq. (7), we may find equivalence relationships
term by term between the two sets of equations. We illustrate this
in the following section with examples.

3.3 Examples of Complexity Calculation. In this section, by
continuing the example in Fig. 1, which is redrawn in Fig. 6, we
demonstrate the procedures of calculating complexity at a station.
More specifically, we will consider examples with or without pro-
cess flexibility.

3.3.1 Example Without Process Flexibility. In Fig. 6, four se-
quential assembly activities are identified at station 3. Complexity
is expressed according to Eq. (7) by assigning superscripts 1-4 as
part choice complexity, fixture choice complexity, tool choice
complexity, and assembly procedure choice complexity, respec-
tively. Thus, according to the station level model, we have the
following equation for station 3:

Cs = a}Hy + aaH3 + a3Hiy + a3H; )
At the station, we also know the process requirement as follows.

1. One of the four parts, i.e., variants of F3, is chosen accord-
ing to customer order.

2. One of the four distinct tools is chosen according to the
chosen variant of Fj.

3. One of the two distinct fixtures is chosen according to the
variant of F, installed at station 2.

4. One of the three distinct assembly procedures is chosen ac-
cording to the variant of F'; installed at station 1.

On the other hand, the propagation scheme at the system level
can be determined from the viewpoint of feed complexity (Cs3)
and transfer complexity (C;3 and C,3), which is expressed accord-
ing to Eq. (8) as follows:

C3=Cy;3+C3+Cy3 (10)

There exists an agreement between Egs. (9) and (10) or equiva-
lently, Egs. (7) and (8), which is shown below.
Given process information, we identify the types of choice
complexity in Eq. (10) as follows:
* part choice complexity: aéHé
tool choice complexity: azHg

fixture choice complexity: z:ugH2

Assembly Procedure Choice - Cq3

Station 3

Part & Tool
Choice

Fig. 6 Complexity propagation of the example in Fig. 1
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* procedure choice complexity: agHg
By complexity propagation, we have

* feed complexity: Cy3= a;Hé + agHg

transfer complexity: Cr3= a%H% and C3= agHg

From the agreement, the sources of complexity can be identi-
fied and the H terms are now easily calculated. That is, if an H
term corresponds to the feed complexity, it is a function of the
mix ratio of the current station; however, if an H corresponds to
the transfer complexity, it is a function of the mix ratio of the
station, which is specified in the first subscript of its correspond-
ing Cj;, i.e., station i. As a result, Hé=H§=H3, where Hj is the
entropy of the variants added at station 3; similarly, H%:Hz, H‘31
=H 1-

Now, let us consider numerical values for the example. Assume
that the P matrix in Eq. (1) takes the following values:

05 02 03 0
P=|05 05 0 O
03 03 02 02

Then,
Hy=Hj=Hy=H(0.3,0.3,0.2,0.2) = 1.971 bits
H3=H,=H(0.5,0.5) =1 bit
H3=H, = H(0.5,0.2,0.3) = 1.485 bits (11)
and

Cy=Cy3+ C13+ Co= 197104+ 1.97103 + a3 + 1.48507
(12)

For simplicity, assuming aé: a%: agz aé: 1, we finally obtain the
total complexity at station 3,

C3;=1971+1971 + 1 + 1.485=6.427 bits (13)

3.3.2 Influence of Process Flexibility. So far, we have illus-
trated in Egs. (11)—(13) an example of calculating choice com-
plexity with no flexibility in the manual assembly process. How-
ever, flexibility is usually built into assembly systems such that
common tools or fixtures can be used for different variants so as
to simplify the process. That is, flexible tools, common fixtures, or
shared assembly procedures are adopted to treat a set of variants
so that choices (of the tools, fixtures, and assembly procedures)
are eliminated. Since fewer choices are needed, complexity re-
duces. However, not all the assembly processes can be simplified
by flexibility strategies. Sometimes, flexible tools, common fix-
tures, or shared assembly procedures may require significant
changes or compromises in product design and process planning,
which are usually costly if not impossible. To characterize the
impact of flexibility, i.e., to establish the relationship between
product feature variants and process requirements, a product-
process association matrix (denoted as A-matrix) is defined in the
following discussion.

We again use the example in Fig. 6. At station 3, we consider
fixture changeover, and it is denoted as the kth assembly activity.
Which fixture should be used in assembling F3 at station 3 is
determined by the variant of F, assembled previously at station 2.
If no flexibility is present, fixture choice is needed at station 3 by
observing feature F, according to the following rules:

* Use fixture 1 if V,; is present.
* Use fixture 2 if V,, is present.

Thus there are two states in the fixture choice process; the map-
ping relationship can be expressed in a A-matrix as follows:

051013-6 / Vol. 130, OCTOBER 2008

A2 10
R (14)
where A§3 denotes the A-matrix for the second activity at station 3
associated with the variants added at station 2; the columns are the
states of the second activity at station 3 and the rows are the
variants of the feature F, affecting the activity. The ones in the
cells establish associations between the state in the column and
the variant in the row.

A general definition of the A-matrix for the kth assembly activ-
ity at station j due to variety added at station i is given as follows:

011 O Otm
A=l T (15)
O Gup oo Oy
where
1 variant s at station i requires the kth activity
6= to be in state ¢ at station j

0 otherwise

m and n are the cardinality of states and variants, respectively.
By definition, the A-matrix satisfies the following properties:

1. 3%, 6,,=1,fors=1,2,...,n
2osr8,=1,fort=1,2,....m

3. n=m

Property 1 holds because one variant can lead to one and only one
state. Property 2 holds because each state must be associated with
at least one variant; otherwise, the column associated with the
empty state can be eliminated and the size of the matrix shrinks by
1. Lastly, property 3 holds because the maximal number of states
cannot exceed the total number of variants. That is, in the extreme
case of nonflexibility, each variant requires the characteristic to be
in a distinct state, and the A-matrix becomes a unit matrix of
dimension of the number of variants.

Consider the example in Fig. 6 again. However, if a common
fixture is adopted, the same fixture can be used whether V,; or 