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Modeling of Manufacturing
Complexity in Mixed-Model
Assembly Lines
Mixed-model assembly lines have been recognized as a major enabler to handle product
variety. However, the assembly process becomes very complex when the number of prod-
uct variants is high, which, in turn, may impact the system performance in terms of
quality and productivity. This paper considers the variety induced manufacturing com-
plexity in manual mixed-model assembly lines where operators have to make choices for
various assembly activities. A complexity measure called “operator choice complexity”
(OCC) is proposed to quantify human performance in making choices. The OCC takes an
analytical form as an information-theoretic entropy measure of the average randomness
in a choice process. Meanwhile, empirical evidences are provided to support the pro-
posed complexity measure. Based on the OCC, models are developed to evaluate the
complexity at each station and for the entire assembly line. Consequently, complexity can
be minimized by making system design and operation decisions, such as error-proof
strategies and assembly sequence planning. �DOI: 10.1115/1.2953076�
Introduction
Traditional mass production was based on dedicated assembly

ines where only one product model was produced in large quan-
ities. Such systems can achieve high productivity by using prin-
iples of economies of scale and work division among assembly
tations. However, in today’s marketplace, where customers de-
and high product variety and short lead times, mass customiza-

ion has been recognized as a new paradigm for manufacturing
1,2�. Mass customization promises individualized products at
ass production cost. As a result of such paradigm change, as-

embly systems must be designed to be responsive to customer
eeds while at the same time achieving mass production quality
nd productivity. Mixed-model assembly lines �MMALs� have
een recognized as a major enabler to handle increased variety. A
MAL typically takes the form of a flow line. The topics of

ffectively assigning tasks to stations and balancing the lines for
ultiple product types have been active research areas for MMAL

n recent years �3�.
Various industries are practicing MMALs. The variety of prod-

cts offered in these lines has increased dramatically over the past
ecade. For example, in a typical automobile assembly plant, the
umber of different vehicles being assembled can reach tens of
housands in terms of the possible build combinations of options.
n fact, BMW claims that “Every vehicle that rolls off the belt is
nique” and the number of possible automobile variations in the
MW 7 Series alone could reach 1017.
Such an astronomical number of build combinations undoubt-

dly presents enormous difficulties in the design and operation of
he assembly systems. We still take automobile assembly as the
xample. It has been shown by both empirical and simulation
esults �4–6� that increased vehicle product variety has a signifi-
ant negative impact on the performance of the mixed-model as-
embly process, for example, on quality and productivity. Such
mpact can result from assembly system design as well as people
erformance under high variety. The effect from the latter persists
ince only limited automation can be implemented in the automo-
ile final assembly �7,8�. Thus the questions presented here are
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twofold: how variety impacts people and system performance, and
how to design assembly systems and organize production to allow
high product variety without sacrificing quality and productivity.

One of the possible approaches to assessing the impact of prod-
uct variety on manufacturing system performance is to investigate
how product variety complicates the mixed-model assembly pro-
cess. However, only limited research has been done on defining
manufacturing system complexity. For example, MacDuffie et al.
�5� established an empirical relationship between complexity and
manufacturing system performance. They defined product mix
complexity by looking at product variety �product mix and its
structure� in assembly plants. According to the differences in the
levels of product variety, three types of product mix complexity
were defined in terms of empirical scores: model mix complexity,
part complexity, and option complexity. By statistical analysis, a
significant negative correlation between the complexity measures
and the manufacturing performance was found. The result was
based on the data from 70 assembly plants worldwide that partici-
pated in the International Motor Vehicle Program at MIT.

Besides empirical studies, attempts have also been made to
analytically define complexity in manufacturing. For instance,
complexity has once been associated with the amount of effort
needed to make a part. The effort was quantified by a logarithmic
function of the probability of achieving a certain geometric preci-
sion and surface quality in machining �9�. The function is widely
known as Shannon’s information entropy �10�. Similarly,
Fujimoto and Ahmed �11� defined a complexity index for assem-
bling. The index takes the form of entropy to evaluate the assem-
blability of a product. The assemblability was defined as the un-
certainty of gripping, positioning, and inserting parts in an
assembly process. Also, complexity has been extended as a mea-
sure of uncertainty in achieving the specified functional require-
ments in an axiomatic design �12�.

Recently, complexity has been defined in an analytical form for
manufacturing systems as a measure of how product variety com-
plicates the process. Fujimoto et al. �13� introduced a complexity
measure based on product structure using information entropy in
different assembly process planning stages. By reducing the com-
plexity, they claimed that the impact of product variety on manu-
facturing systems could be reduced. However, the complexity
measure does not incorporate the manufacturing system character-
istics into the analysis. Deshmukh et al. �14� defined an entropic

complexity measure for part mix in job shop scheduling. The
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omplexity quantifies the difficulty associated with making sched-
ling decisions for the job shop, in which several types of prod-
cts are manufactured simultaneously. An information-theoretic
ntropy measure of complexity is derived for a given combination
nd ratio of the part types. However, the complexity analysis is
ot applicable for a mixed-model assembly, which has a flow line
r various hybrid configurations.

In summary, there is a general agreement that �i� product vari-
ty does increase the complexity in manufacturing systems and
ii� information entropy is an effective measure of complexity.
owever, in order to analyze the impact of variety on manufac-

uring complexity in mixed-model assembly systems, one has to
ake into consideration the characteristics of the assembly system,
uch as system configuration, task to station assignment, and as-
embly sequences. In addition, there is a lack of understanding on
he mechanisms through which variety impacts manufacturing.

To address the above issues, this paper defines a new measure
f complexity that integrates both product variety and assembly
rocess information and then develops models for evaluating
omplexity in multistage mixed-model assembly systems. This
aper is organized as follows. Section 2 defines the measure of
perator choice complexity, which results from the analysis of
hoices and choice process in mixed-model assembly operations.
oreover, the section also provides both theoretic and empirical

ustifications for the viability of the measure. Section 3 presents
he modeling of complexity for MMALs, where models at the
tation and system levels are both investigated. Additionally, the
nfluence of process flexibility is analyzed using numerical ex-
mples. Then potential applications for assembly system design
y using the model are suggested in Sec. 4. Finally Sec. 5 con-
ludes this paper and proposes future work.

Measure of Operator Choice Complexity
This section begins with a brief introduction to MMALs. Then

t describes the choices and choice processes on the line to help
heoretically define the measure of choice complexity. The mea-
ure is then justified by results from the cognitive ergonomics
tudies.

2.1 Mixed-Model Assembly Line. Figure 1 illustrates an ex-
mple of a product structure and its corresponding MMAL. The
roduct has three features �Fi�; each feature has several variants
e.g., Vij is the jth variant of Fi�. The product structure is repre-
ented by a product family architecture �PFA� �15�.

The PFA illustrates all the possible build combinations of the
ustomized products by combining the variants of features. For
xample, in Fig. 1, the maximal number of different end products
s 24 �i.e., 3�2�4�. Moreover, we represent the product mix
nformation by a matrix P, where pij is the demand �in percent-
ge� of the jth variant of the ith feature. For instance, the P matrix

Fig. 1 An illustration of a PFA and its MMAL
or the product in Fig. 1 is the following:

51013-2 / Vol. 130, OCTOBER 2008
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P = �p11 p12 p13 0

p21 p22 0 0

p31 p32 p33 p34
� �1�

Each row corresponds to the demand �in terms of mix ratio� of
one feature, satisfying � jpij =1, ∀ i.

In the mixed-model assembly process, one of the variants from
every feature is selected and assembled sequentially along the
flow of the assembly line. For example, as depicted in Fig. 1, V11
is chosen for F1, V22 for F2, and V32 for F3. Quite often, this
assembly process is accomplished manually. Operators at every
station must make correct choices among a number of alterna-
tives. The choices include choosing the right part, tool, fixture,
and assembly procedure for the variant.

2.2 Choices and Choice Processes. At each assembly station,
the operator must choose the correct part from all possible vari-
ants according to the customers’ order. The specification of the
order is usually written on a production tag/manifest attached on
the partially completed assemblage. This process of selecting the
right part continues throughout the day. To better understand the
process, we call it the choice process.

The choice process consists of a sequence of choices with re-
spect to time. It can be modeled as a sequence of random vari-
ables, each of which represents choosing one of the possible al-
ternatives. Mathematically, it can be considered as a discrete time
discrete state stochastic process �Xt , t=1,2 , . . . 	 on the state space
�the choice set� Xt� �1,2 , . . . ,M	, where t is the index of discrete
time period and M is the total number of possible alternatives
�parts� that could be chosen during each period. More specifically,
Xt=m ,m� �1,2 , . . . ,M	 is the event of choosing the mth alter-
ative during period t.

In the simplest case, if the choice process is independent and
identically distributed �iid�, we then use a single random variable
X �instead of Xt’s� to describe the outcome of a choice. Further-
more, we know all the alternatives of X and their probabilities;
i.e., the probability of a choice taking the mth outcome is known
as pm�P�X=m�, for m=1,2 , . . . ,M. In the following discussions,
we limit ourselves by assuming iid sequences.

2.3 Operator Choice Complexity. To characterize the opera-
tor performance in making choices, we define the term operator
choice complexity �or choice complexity� as follows.

DEFINITION. Choice complexity is the average uncertainty or
randomness in a choice process, which can be described by a
function H in the following form:

H�X� = H�p1,p2, . . . ,pM� = − C�
m=1

M

pm log pm �2�

where C is a constant depending on the base of the logarithm
function chosen. If log2 is selected, C=1 and the unit of complex-
ity is bit.

Theoretical properties. The following seven properties of the
function H as described in Ref. �10� make it suitable as a measure
of choice complexity.

�1� H is continuous in pm; i.e., small changes in pm should
result in only small changes in choice complexity.

�2� If pm’s are brought closer to each other, H would increase.
Put alternatively, any change toward equalization of
p1 , p2 , . . . , pM should increase H. For a given M, H is a
maximum and equal to log M when all pi’s are equal �i.e.,
1 /M�. In this case, H is an increasing function of M. This
case is also intuitively the most uncertain situation to make
a choice since the operator is considered to be noninforma-
tive �16�.

�3� If a choice process is broken down into two successive

stages, the original H is the weighted sum of the individual
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values of H. For example, H�1 /2,1 /3,1 /6�=H�1 /2,1 /2�
+1 /2H�2 /3,1 /3�.

�4� H=0 if and only if all the pm’s but one are zero, this one
has the value of unity, i.e., H�1,0 , . . . ,0�=H�0,1 , . . . ,0�
=H�0,0 , . . . ,1�=0. Thus only when we are certain of the
outcome does H vanish, and there exists no choice com-
plexity. Otherwise H is positive.

�5� H does not change when an additional alternative with no
chance to happen is added into the original system.

�6� H is a symmetrical function of p1 , p2 , . . . , pM; i.e., if the
probabilities of choices are permuted among the alterna-
tives, choice complexity does not change.

�7� H is a sum of surprisal functions weighted by probability
pm’s �16�. A surprisal function log 1 / pm is defined to quan-
tify how much surprise �uncertainty� is incurred for an in-
dividual choice. The higher the probability of the incoming
alternative is, the less surprisal is incurred, and vice versa.
Thus, by weighting the surprisal with probabilities for the
choice process, we obtain the entropy that characterizes the
average randomness in the sequence. Therefore the entropy
function H possesses most of the desirable properties to be
one of the possible measures of choice complexity.

2.4 Justifications for Choice Complexity Measure. There is
close similarity and connection between the theoretical proper-

ies of the complexity measure and the experimental results found
n human cognitive studies. The experiments were conducted to
ssess human performance when making choices. Coincidentally,
nformation entropy was found to be one of the effective mea-
ures. The performance of human choice-making activities was
nvestigated by measuring average reaction times �RTs�, i.e., how
uickly a person can make a choice in response to a stimulus. One
f the earliest studies was done by Merkei in 1885, described by
oodworth �17�. In the experiment, digits 1–5 were assigned to

he fingers of the right hand and the Roman numbers I–V were
ssigned to the fingers of the left hand. On any given set of trials,
he subject knew which of the set of stimuli would be possible
e.g., if there were three possible stimuli, they might be 3, 5, and
�. Merkel studied the relationship between the number of pos-

ible stimuli and the choice RT. His basic findings are presented in
ig. 2�a�, where the relationship between choice RT and the num-
er of alternatives was not linear.

This relationship in Fig. 2�a� has been further studied by a
umber of researchers since Merkel’s original observations.

Fig. 2 Mean choice RT as „a… a nonlinear functi
†17‡ and „b… a linear function of stimulus inform
reprinted from Ref. †22‡
mong them, the most widely known one was Hick �18�. He

ournal of Manufacturing Science and Engineering
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discovered that the choice RT is linearly proportional to the loga-
rithm of the number of stimulus alternatives if all the alternatives
are equal �see Fig. 2�b��, i.e.,

Mean choice RT = a + b�log2 n� �3�

where n is the number of stimulus-response alternatives, and a
and b are constants, which can be determined empirically by fit-
ting a line to the measured data. This relation came to be known
as Hick’s law, which was regarded as one major milestone in the
area of cognitive ergonomics.

Coincidentally, the term �log2 n� is exactly the information en-
tropy calculated in Eq. �2� if all the pm’s are equal, which follows
from the experiment setting that the choice process is iid and all
the alternatives likely occur equally. The above analogy was first
discovered by Hyman �19�, where he concluded that “the reaction
time seems to behave, under certain conditions, in a manner
analogous to the definition of information.”

Hyman �19� also realized that, according to Shannon’s defini-
tion of information entropy, he could change information content
in the experiment by other means. Thus, in addition to varying the
number of stimuli and letting each one of them occur in Hick’s
�18� experiment, he altered stimulus information content simply
by �i� changing the probability of occurrence of particular choices
and �ii� introducing sequential dependencies between successive
choices of alternatives �see Fig. 3�. Thus, naturally enough, we
can use H to replace the �log2 n� term; Eq. �3� becomes

Mean choice RT = a + bH �4�
Because of the significance of this generalization, Hick’s law is

also referred to as the Hick–Hyman law.
The H term in Eq. �4� is one of the variants of Shannon’s

information entropy �10� in the communication systems study.
Thus, a fundamental assumption behind this analog is that the
mental process of a human being is modeled as an information
transmission process. In fact, this assumption is confirmed by the
recent research in cognitive ergonomics on the queuing network
modeling of an elementary mental process. Liu �20� suggested
that at the level of mean RTs, a continuous-transmission fork-join
network demonstrates the same logarithmic behavior as that of the
experimental results in the Hick–Hyman law. Hence, the legiti-
macy of applying Eq. �4� is limited to situations where individuals
are asked to responsed promptly to a stimulus, and the decision to
be made is very simple, requiring little conscious thought. When

of the number of stimulus-response alternatives
ion, or log2 of the number of alternatives †18‡,
on
at
analyzing the mixed-model assembly process, we observe the

OCTOBER 2008, Vol. 130 / 051013-3
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ery similar situation that the line operators are asked to handle
ariety in a very tight cycle time without time for deliberating
ver the decisions. However, if the subjects are given more time,
he thinking process will not be as simple as merely an informa-
ion transmission. Liu �20� also reviewed a class of more sophis-
icated queuing network models for RT.

Moreover, it was suggested in Welford �22� that the information
easure is adequate to assess human performance since it pro-

ides a valuable means of combining RT and errors �i.e., speed
nd accuracy� into a single score.

Practitioners in various fields have found the information en-
ropic measure of human performance useful. One of the ex-
mples using the Hick–Hyman law in an assembly operation
nalysis comes from Bishu and Drury �23�. They used the amount
f information, measured in bits, contained in a wiring assembly
ask to predict task completion time. The amount of information is

function of both the number of wires to choose from and the
umber of terminals to be wired. They found that task completion
ime was linearly related to the amount of information contained
n the task. Additionally, they also found that the more the infor-

ation gain was, the more likely would errors occur. That is, the
otal information content increases both the task completion time
nd errors. Gatchell �24� used the choice RT technique and experi-
entally studied operator performance on part choices under part

roliferation. Her findings suggest that an operator with more part

ig. 3 Choice RT for three different ways of manipulating the
timulus information H, reprinted from Ref. †21‡, using data
rom Ref. †19‡
Fig. 4 Choices in sequential ass

51013-4 / Vol. 130, OCTOBER 2008
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choices made more errors and needed more decision time.
According to both theoretical properties and empirical results,

the entropy-based quantity H is suitable to measure operator
choice complexity. Therefore, we propose to use the following
form to quantify the value of choice complexity:

Choice complexity = ��a + bH�, � � 0 �5�
The form is similar to that of the Hick–Hyman law. It only

differs in a positive scalar �, served as a weight to a specific
choice process. In other words, the choice complexity is positive
monotonic to the amount of uncertainty embedded in the choice
process. Since Eq. �5� takes a simple linear form with constants �,
a, and b, the only remaining part to be determined is the value of
H when evaluating complexity. By incorporating information
from product design, line design, and operation, one can develop
models and methodologies to quantify the information content in
terms of the various operator choices in a mixed-model assembly
process.

3 Models of Complexity for Mixed-Model Assembly
Lines

This section defines the operator choice complexity in the sta-
tion level by simply extending the previous definition for a single
assembly activity. Then complexity in the system level is exam-
ined after a unique propagation behavior of complexity is found.
Moreover, process flexibility and commonality are taken into ac-
count when analyzing complexity. Finally a complexity model is
proposed for multistage assembly systems.

3.1 Station Level Complexity Model. On a station, in addi-
tion to the part choice mentioned in Sec. 2, the operator may
perform other assembly activities as well in a sequential manner,
and some examples of the corresponding choices are briefly de-
scribed as follows �see Fig. 4�.

1. Fixture choice: choose the right fixture according to the base
part �i.e., the partially completed assemblage� to be mounted
on as well as the added part to be assembled.

2. Tool choice: choose the right tool according to the added
part to be assembled as well as the base part to be mounted
on.

3. Procedure choice: choose the right procedure, e.g., part ori-
entation, approach angle, or temporary unload of certain
parts due to geometric conflicts/subassembly stabilities.

According to Eq. �5�, we define the associated complexity at the
station as part choice complexity, fixture choice complexity, tool
choice complexity, and assembly procedure choice complexity.
All these choices contribute to the operator choice complexity.

Without loss of generality, we number the sequential assembly
embly activities at one station

Transactions of the ASME
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ctivities in Fig. 4 from 1 to K and denote Cj as the total com-
lexity of station j, which is a weighted sum of the various types
f choice complexity at the station,

Cj = �
k=1

K

� j
k�aj

k + bj
kHj

k�, � j
k � 0, k = 1,2, . . . ,K �6�

here � j
k are the weights related to the task difficulty of the kth

ssembly activity at station j, aj
k’s and bj

k’s are empirical constants
epending on the nominal human performance similar to that of
he choice RT experiments, and Hj

k is the entropy computed from
he variant mix ratio relevant to the kth activity at station j. For
implicity, we assume that aj

k=0 and bj
k=1, ∀ j ,k. Then Eq. �6�

educes to

Cj = �
k=1

K

� j
kHj

k, � j
k � 0, k = 1,2, . . . ,K �7�

3.2 Propagation of Complexity. By Eq. �7�, the complexity
n individual stations is considered as a weighted sum of com-
lexities associated with every assembly activity. Among them,
ome activities are caused only by the feature variants at the cur-
ent station, such as picking up a part, or making choices on tools
or the selected part. The complexity associated with such assem-
ly activity is called feed complexity. However, the choice of fix-
ures, tools, or assembly procedures at the current station may
epend on the feature variant that has been added at an upstream
tation. This particular component of complexity is termed as
ransfer complexity.

A formal definition of the two types of complexity is given
elow. Assume a current station j:

1. feed complexity: choice complexity caused by the feature
variants added at station j

2. transfer complexity: choice complexity caused by the feature
variants added at an upstream station, i.e., station i �i pre-
cedes j, denoted as i� j�

ransfer complexity exists because the feature variants added on
he previous station i may affect the process of realizing the fea-
ure at station j, causing tool changeovers, fixture conversions, or
rocedure changes.

The propagation behavior of the two types of complexity is
epicted in Fig. 5, where for station j, the feed complexity is
enoted as Cjj �with two identical subscripts� and the transfer
omplexity is denoted as Cij �with two distinct subscripts to rep-

Fig. 5 Complexity propagation scheme
Fig. 6 Complexity propagatio

ournal of Manufacturing Science and Engineering
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resent the complexity of station j caused by an upstream station i�.
Thus the transfer complexity can flow from upstream to down-
stream, but not in the opposite direction. In contrast, the feed
complexity can only be added at the current station with no flow-
ing or transferring behavior.

Hence the total complexity at a station is simply the sum of the
feed complexity at the station and the transfer complexity from all
the upstream ones, i.e., for station j,

Cj = Cjj + �
∀i:i�j

Cij �8�

Compared with Eq. �7�, we may find equivalence relationships
term by term between the two sets of equations. We illustrate this
in the following section with examples.

3.3 Examples of Complexity Calculation. In this section, by
continuing the example in Fig. 1, which is redrawn in Fig. 6, we
demonstrate the procedures of calculating complexity at a station.
More specifically, we will consider examples with or without pro-
cess flexibility.

3.3.1 Example Without Process Flexibility. In Fig. 6, four se-
quential assembly activities are identified at station 3. Complexity
is expressed according to Eq. �7� by assigning superscripts 1–4 as
part choice complexity, fixture choice complexity, tool choice
complexity, and assembly procedure choice complexity, respec-
tively. Thus, according to the station level model, we have the
following equation for station 3:

C3 = �3
1H3

1 + �3
2H3

2 + �3
3H3

3 + �3
4H3

4 �9�

At the station, we also know the process requirement as follows.

1. One of the four parts, i.e., variants of F3, is chosen accord-
ing to customer order.

2. One of the four distinct tools is chosen according to the
chosen variant of F3.

3. One of the two distinct fixtures is chosen according to the
variant of F2 installed at station 2.

4. One of the three distinct assembly procedures is chosen ac-
cording to the variant of F1 installed at station 1.

On the other hand, the propagation scheme at the system level
can be determined from the viewpoint of feed complexity �C33�
and transfer complexity �C13 and C23�, which is expressed accord-
ing to Eq. �8� as follows:

C3 = C33 + C13 + C23 �10�

There exists an agreement between Eqs. �9� and �10� or equiva-
lently, Eqs. �7� and �8�, which is shown below.

Given process information, we identify the types of choice
complexity in Eq. �10� as follows:

• part choice complexity: �3
1H3

1

• tool choice complexity: �3
3H3

3

• fixture choice complexity: �3
2H3

2

n of the example in Fig. 1

OCTOBER 2008, Vol. 130 / 051013-5
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• procedure choice complexity: �3
4H3

4

y complexity propagation, we have

• feed complexity: C33=�3
1H3

1+�3
3H3

3

• transfer complexity: C23=�3
2H3

2 and C13=�3
4H3

4

From the agreement, the sources of complexity can be identi-
ed and the H terms are now easily calculated. That is, if an H

erm corresponds to the feed complexity, it is a function of the
ix ratio of the current station; however, if an H corresponds to

he transfer complexity, it is a function of the mix ratio of the
tation, which is specified in the first subscript of its correspond-
ng Cij, i.e., station i. As a result, H3

1=H3
3=H3, where H3 is the

ntropy of the variants added at station 3; similarly, H3
2=H2, H3

4

H1.
Now, let us consider numerical values for the example. Assume

hat the P matrix in Eq. �1� takes the following values:

P = �0.5 0.2 0.3 0

0.5 0.5 0 0

0.3 0.3 0.2 0.2
�

hen,

H3
1 = H3

3 = H3 = H�0.3,0.3,0.2,0.2� = 1.971 bits

H3
2 = H2 = H�0.5,0.5� = 1 bit

H3
4 = H1 = H�0.5,0.2,0.3� = 1.485 bits �11�

nd

C3 = C33 + C13 + C23 = 1.971�3
1 + 1.971�3

3 + �3
2 + 1.485�3

4

�12�

or simplicity, assuming �3
1=�3

2=�3
3=�3

4=1, we finally obtain the
otal complexity at station 3,

C3 = 1.971 + 1.971 + 1 + 1.485 = 6.427 bits �13�

3.3.2 Influence of Process Flexibility. So far, we have illus-
rated in Eqs. �11�–�13� an example of calculating choice com-
lexity with no flexibility in the manual assembly process. How-
ver, flexibility is usually built into assembly systems such that
ommon tools or fixtures can be used for different variants so as
o simplify the process. That is, flexible tools, common fixtures, or
hared assembly procedures are adopted to treat a set of variants
o that choices �of the tools, fixtures, and assembly procedures�
re eliminated. Since fewer choices are needed, complexity re-
uces. However, not all the assembly processes can be simplified
y flexibility strategies. Sometimes, flexible tools, common fix-
ures, or shared assembly procedures may require significant
hanges or compromises in product design and process planning,
hich are usually costly if not impossible. To characterize the

mpact of flexibility, i.e., to establish the relationship between
roduct feature variants and process requirements, a product-
rocess association matrix �denoted as �-matrix� is defined in the
ollowing discussion.

We again use the example in Fig. 6. At station 3, we consider
xture changeover, and it is denoted as the kth assembly activity.
hich fixture should be used in assembling F3 at station 3 is

etermined by the variant of F2 assembled previously at station 2.
f no flexibility is present, fixture choice is needed at station 3 by
bserving feature F2 according to the following rules:

• Use fixture 1 if V21 is present.
• Use fixture 2 if V22 is present.

hus there are two states in the fixture choice process; the map-

ing relationship can be expressed in a �-matrix as follows:
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�23
2 = 
1 0

0 1
� �14�

where �23
2 denotes the �-matrix for the second activity at station 3

associated with the variants added at station 2; the columns are the
states of the second activity at station 3 and the rows are the
variants of the feature F2 affecting the activity. The ones in the
cells establish associations between the state in the column and
the variant in the row.

A general definition of the �-matrix for the kth assembly activ-
ity at station j due to variety added at station i is given as follows:

�ij
k = ��1,1 �1,2 . . . �1,m

] ] � ]

�n,1 �n,2 . . . �n,m
� �15�

where

�s,t = �1 variant s at station i requires the kth activity

to be in state t at station j

0 otherwise



m and n are the cardinality of states and variants, respectively.
By definition, the �-matrix satisfies the following properties:

1. �t=1
m �s,t=1, for s=1,2 , . . . ,n

2. �s=1
n �s,t�1, for t=1,2 , . . . ,m

3. n�m

Property 1 holds because one variant can lead to one and only one
state. Property 2 holds because each state must be associated with
at least one variant; otherwise, the column associated with the
empty state can be eliminated and the size of the matrix shrinks by
1. Lastly, property 3 holds because the maximal number of states
cannot exceed the total number of variants. That is, in the extreme
case of nonflexibility, each variant requires the characteristic to be
in a distinct state, and the �-matrix becomes a unit matrix of
dimension of the number of variants.

Consider the example in Fig. 6 again. However, if a common
fixture is adopted, the same fixture can be used whether V21 or V22
is mounted on station 2. Thus, by definition, the �-matrix be-
comes simply

�23
2 = 
1 0

1 0
�

which could be reduced to

�23
2 = 
1

1
� �16�

By using the �-matrix, we are now capable of calculating the H
terms when flexibility is present in the process. Define a vector
qij

k = �q1 ,q2 , . . . ,qm�, where qt , t� �1,2 , . . . ,m	 is the probability
of the kth activity being in state t at station j due to the variants
added at station i, satisfying �s=1

m qs=1. By the definition of the
product mix matrix P in Eq. �1� and the �-matrix in Eq. �15�, the
following relationship holds:

qij
k = �q1,q2, . . . ,qm� = Pi· � �ij

k �17�

where Pi· is the ith row of matrix P, representing the mix ratio of
the feature �i.e., F2 in the example� assembled on station i. Thus,
the corresponding H term is

Hj
k = H�qij

k � = − �
t=1

m

qt log2 qt �18�

Revisit the example in Fig. 6. When calculating the H term �H3
2�

corresponding to the fixture choice complexity at station 3, we

have the following results:

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



v

w

w

S
v

a
T
n
s
E

a
�
�

N

J

Downlo
Case 1. Use dedicated fixtures, i.e., a different fixture for each
ariant. By the �-matrix in Eq. �14�, we have

q23
2 = �q1 q2� = P2· � �23

2 = �0.5 0.5� � 
1 0

0 1
� = �0.5 0.5�

⇒ H3
2 = �

t=1

2

qt log2 1/qt = 2 � 0.5 log2 1/0.5 = 1 bit

hich duplicates exactly the result in Eq. �11�.
Case 2. A common fixture is used. By the �-matrix in Eq. �16�,

e have

q23
2 = �q1 q2� = �0.5 0.5� � 
1

1
� = �1� ⇒ H3

2 = �
t=1

1

qt log2 1/qt

= 1 log2 1/1 = 0 bit

ince fixture is common to the process of assembling F3 with
ariants of F2, no choice is needed.

Assume that we have flexibility or commonality in fixture, tool,
nd assembly procedures, which is expressed by the �-matrices in
able 1. As a summary, the table also demonstrates a detailed
umerical example to calculate complexity at station 3. The re-
ults show a reduced value of choice complexity compared with
q. �13� because of the additional process flexibility.

3.4 System Level Complexity Model. In general, consider an
ssembly line with n workstations, numbered 1–n sequentially
see Fig. 7�. The mix ratio defined in Eq. �1� is known. Using Eq.
2�, we can obtain the entropy H for the variants at each station

Table 1 Numerical example of complexity calculation

o. Activity �-matrix q-vector H-term

1 Part
pick-up

�33
1 = �1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� q33

1 = �0.3

0.3

0.2

0.2
�

T H3
1=1.971

2 Fixture
conversion �23

2 = �11 � q23
2 = �1�T H3

2=0

3 Tool
changeover

�33
3 = �1 0

1 0

0 1

0 1
� q33

3 = �0.6

0.4 �T H3
3=0.971

4 Assembly
procedure

change �13
4 = �1 0

0 1

1 0 � q13
4 = �0.8

0.2 �T H3
4=0.722

Total complexity at station 3 with equal weights 3.664

Station 1 j-1...

H1

H0
Hj-1

C1,j

Cj-1,j

C0,j

Transfer Complexity Feed Complexity

Fig. 7 Propagation of complexity a

sembly system
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according to their mix ratios.
The propagation of complexity in a multistage system can be

analyzed by considering how the complexity of assembly opera-
tions �choices� at a station is influenced by the variety added at its
upstream stations �incoming complexity�, as well as how variants
added at the station impact the downstream stations �outgoing
complexity�. The incoming complexity at station j, Cj

in, is the
amount of complexity flowing into the station from its upstream
stations, which can be calculated in the following way:

Station 1: C1
in = C01 = a01H0

Station 2: C2
in = C02 + C12 = a02H0 + a12H1

. . .

Station j: Cj
in = C0j + C1j + C2j + ¯ + Cj−1,j = a0jH0 + a1jH1

+ a2jH2 + ¯ + aj−1,jHj−1

. . .

Station n: Cn
in = C0n + C1n + C2n + ¯ + Cn−1,n = a0nH0 + a1nH1

+ a2nH2 + ¯ + an−1,nHn−1

where Cj
in is the incoming complexity of station j, j=1–n, Hj is

the entropy of variants added at station j, H0 is the entropy of
variants due to the base part, aij is the cofficient of complexity
impact on station j due to variety added at station i, i.e.,

aij = �� j
k variants added at station i have an impact on the

kth assembly activity at station j, and i � j

0 otherwise



Or, equivalently, by using a matrix representation, a comprehen-
sive model can be obtained as follows:

�
C1

C2

]

Cn

�
in

= �
a01 0 . . . 0

a02 a12 . . . 0

] ] � 0

a0n a1n . . . an−1,n

� � �
H0

H1

]

Hn−1

� �19�

In short,

Cin = AT � H �20�

where Cin is the incoming complexity vector of size n for the
system, with its ith entry being the incoming complexity at station
i, for i=1,2 , . . . ,n; A is the characteristic matrix of size n�n,
which characterizes the interactions between stations �due to the
feature variants added on the stations� in terms of choice complex-
ity; and H encapsulates product variety information, including the
number of variants and their distributions.

The outgoing complexity at station j, Cj
out, is the amount of

complexity flowing out of the station. It is the amount of choice

j j+1 n...
Hn

Cj,j+1

Cj,n

Hj Hj+1

e system level in a multistage as-
t th
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omplexity caused by the variants added at the station, affecting
he operations on the other stations downstream. Similarly, we
ave the following equations:

Station 1: C1
out = C12 + ¯ + C1n = �a12 + ¯ + a1n�H1

Station 2: C2
out = C23 + ¯ + C2n = �a23 + ¯ + a2n�H2

. . .

Station j: Cj
out = Cj,j+1 + ¯ + Cjn = �aj,j+1 + ¯ + ajn�Hj

. . .

Station n: Cn−1
out = Cn−1,n = an−1,nHn

here Cj
out is the outgoing complexity of station j, j=1–n. In fact,

y definition Cn
out=0.

Additionally, since the variety of the base part incurs transfer
omplexity as well, we denote it as C0

out, i.e.,

Base part: C0
out = C01 + C02 + ¯ + C0n = �a01 + a02 + ¯ + a0n�H0

Using the matrix form again, we obtain a comprehensive model
or outgoing complexity as follows:

�
C0

C1

]

Cn−1

�
out

= ��
a01 a02 . . . a0n

0 a12 . . . a1n

] ] � ]

0 0 . . . an−1,n

� � �
1

1

]

1
�


. � �H0,H1, . . . ,Hn−1�T �21�

n short,

Cout = �A � 1� . � H �22�

here Cout is the outgoing complexity vector of size n for the
ystem, with its jth entry being the outgoing complexity from
tation j−1, for j=1,2 , . . . ,n; 1 is a column vector of ones with
ize n; and .� denotes the entry-by-entry product of two vectors
ith identical sizes.

3.5 Extension of the Model. The system level complexity
odel can also be extended to incorporate the influence of process
exibility and commonality. In Sec. 3.3.2, we have demonstrated

he use of product-process association matrix �i.e., the �-matrix�
o deal with the situation where a common fixture was utilized for
wo different variants. Since the fixture helped to eliminate
hoices, the associated choice complexity was expected to de-
rease as well.

By the definition of �-matrix in Eq. �15�, we safely drop k in
he notation for convenience, and we rewrite Eq. �17� as follows:

qij = Pi· � �ij �23�

In fact, the �-matrix in the above equations acts as a math-
matical operator on the entropy of variants added at station i. We
enote the operator in the form of a function.

�ij�Hi� � H�qij� �24�

asically, what the operator does is to calculate the entropy value
y incorporating the information of process flexibility �which may
elp eliminate choices� in the assembly process at station j regard-
ng the variants assembled at station i.

By using �-matrices for every flow of transfer complexity in

he system, we have Eqs. �19� and �20� extended,
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�
C1

C2

]

Cn

�
in

= �
a01�01 0 . . . 0

a02�02 a12�12 . . . 0

] ] � 0

a0n�0n a1n�1n . . . an−1,n�n−1,n

�
� �H0,H1, . . . ,Hn−1�T

In short,

Cin = �A · ��T � H �25�
The matrix multiplication requires the entry-by-entry computa-
tion,

aij�ijHi = aij�ij�Hi� = aij · H�qij�
Similarly, the extended versions of Eqs. �21� and �22� for out-

going complexity are as follows:

��C0,C1, . . . ,Cn−1�T	out = ��
a01�01 a02�02 . . . a0n�0n

0 a12�12 . . . a1n�1n

] ] � ]

0 0 . . . an−1,n�n−1,n

�
� �

1

1

]

1
�
 . � �H0,H1, . . . ,Hn−1�T

In short,

Cout = ��A · �� � 1� . � H �26�
Therefore, the extended system level complexity model com-

prehensively incorporates both product �such as product architec-
ture and mix� and process �such as system configuration, tooling,
task to station assignment, and flexibility� information.

4 Potential Applications
Once the propagation of complexity is understood and models

developed, they can be applied to the design of mixed-model as-
sembly systems. Several potential applications are described be-
low.

4.1 Performance Evaluation and Root Cause Identifica-
tion Using Complexity Charts. Following the procedures in Sec.
3.4, we can analyze the incoming and outgoing complexity for
each station and plot them against the station position in a multi-
stage assembly system �see Fig. 8�. As a result, the stations with
high incoming complexity are the potential stations where error-
proofing strategies need to be provided to mitigate the impact of
variety induced complexity on operator and system performance.

In Fig. 8, the outgoing complexity also shows how much influ-
ence the variants at one particular station have on its downstream
operations. As a result, the outgoing complexity implies the root
cause of the choice complexity in the system. Thus decisions from
product design, such as process commonality strategies and option
bundling policies, need to be considered to moderate outgoing

Fig. 8 Incoming and outgoing complexity charts
complexity.
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4.2 Influence Index and Configuration Design. For any sta-
ion j, once the values of incoming and outgoing complexities are
ound, we may define an index, called influence index, as follows:

Ij =
Cj

out

Cj
in �27�

The index quantifies how much relative influence the variants
dded at station j have on the operations of the other stations. To
llustrate, in Fig. 7, if every complexity stream has one unit of
omplexity, we can calculate the influence index for station j, j
1,2 , . . . ,n, by simply counting the number of streams,

Ij =
No. of outgoing complexity streams

No. of incoming complexity streams
=

n − j

j
�28�

bviously,

• I1=n−1, the first station potentially has the maximal influ-
ence on the others;

• In=0, the last station has no influence on the others.

Thus, in such a sequential manufacturing process, the influence
ndex monotonically decreases with respect to j. Hence we can
onclude that operations at the later stations become vulnerable
nd are affected by the variants assembled at the previous ones.
herefore, by wisely assigning assembly tasks �i.e., the functional

eatures� onto stations, it is possible to prevent complexity streams
rom propagating. One of the intuitive approaches is to assign
eatures with more variants to the stations of smaller influence
ndices �downstream stations�, and vice versa. In this aspect, the
roposed complexity model implies the principle of “delayed dif-
erentiation,” which has already become a common practice in
ndustry �25�.

However, by Eq. �27�, our model suggests that it is not suffi-
ient to look at the number of variants and the position where they
re deployed according to the delayed differentiation principle.
he evaluation of the impact of product variety on manufacturing
omplexity should also take into account the process flexibility
uilt in the system. For instance, if all the variants from the up-
tream could be treated by the same flexible tools, common fix-
ure, and shared assembly procedures in the downstream, variants
an be introduced in the upstream without increasing system com-
lexity. In this case, all the �-matrices for transfer complexity
ecome column vectors with all 1’s in the column, indicating
ommon process requirements for the feature variants in the prod-
ct family. As a result, the transfer complexity vanishes.

Since different configurations have a profound impact on the
erformance of the system �26�, selecting an assembly system
onfiguration other than a pure serial line may help reduce com-
lexity. For instance, using parallel workstations at the later stages
f a mixed-model assembly process reduces the number of
hoices on these stations if we can wisely route the variants at the
oint of the ramified paths �see Fig. 9�. However, balancing these
ypes of manufacturing systems will be a challenge since the sys-
em configuration is no longer serial �27�. A novel method for
ask-machine assignment and system balancing needs to be devel-
ped to minimize complexity while maintaining manufacturing

ig. 9 Possible configurations for mixed-model assembly sys-
ems. Mi’s are machines in the system †27‡.
ystem efficiency.
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4.3 Assembly Sequence Planning to Minimize Complexity.
Assembly sequence planning is an important task in assembly
system design. Since the assembly sequence determines the direc-
tions in which complexity flows �see Fig. 10�, proper assembly
sequence planning can reduce complexity.

Generally, suppose we have a product with n assembly tasks,
and the tasks are to be carried out sequentially in an order subject
to precedence constraints. By applying the complexity model, we
assume that the transfer complexity can be found between every
two assembly tasks. Since only one of the two transfer complexity
values in Fig. 10 is effective �because only the upstream task/
station has influence on the downstream ones� for one particular
assembly sequence, an optimization problem can be formulated to
minimize the system complexity by finding an optimal assembly
sequence while satisfying the precedence constraints.

5 Conclusions and Future Work
This paper proposes a measure of complexity based on the

choices that the operator has to make at the station level. The
measure incorporates both product mix and process information.
Moreover, models are developed for the propagation of complex-
ity at the system level. The significance of this research includes
�i� mathematical models that reveal the mechanisms that contrib-
ute to complexity and its propagation in multistage mixed-model
assembly systems, �ii� understanding of the impact of manufactur-
ing system complexity on performance, and �iii� guidelines for
managing complexity in designing mixed-model assembly sys-
tems to optimize performance. Our future work will focus on the
validation and applications of such model in assembly system
design and operations.
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