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Motion Control Algorithms for 
Sensor-Equipped Robots 
This paper deals with the development of kinematic algorithms for the control of 
sensor-equipped robots. The kinematics is solved in the sensor coordinate system, 
which reduces the computation efforts, and allows the elimination of the first joint 
encoder. Simplification of the algorithms can be obtained when approximations are 
used to solve the inverse kinematics. Three control algorithms based on approxima
tions are presented. However, with these algorithms, convergence to the target is not 
always guaranteed. A Theorem which specifies the sufficient conditions required for 
a trajectory to converge to a target point is proved. Based on this Theorem robot 
parameters can be selected in the design stage of the manipulator. This is illustrated 
for several types of manipulators. 

1 Introduction 
This paper deals with kinematical features of intelligent 

robots having a sensor located at the arm. A typical sensor 
might be a force-torque transducer or a camera located at the 
wrist section. With such robots, the motion commands are 
generated by the sensor and the robot must execute them in 
real time. This requires that the robot algorithms include con
trol in sensor-oriented coordinates, rather than in world coor
dinates as in conventional robots. It is claimed that control in 
sensor (or object) oriented coordinates may be comparable in 
complexity to that required in conventional robots [1], In this 
paper, it is shown that sensor-oriented control may be much 
simpler, and also much faster, compared with the control in 
world coordinate system. 

Based upon a kinematic analysis, the paper proposes mo
tion algorithms for sensor-equipped robots. Simplification of 
the algorithms can be obtained when approximations are used 
to solve the inverse kinematics. However, when using the ap
proximations the robot might diverge from the target point. 
Therefore, sufficient conditions which guarantee the con
vergence in this case must be found. 

The kinematic approach in this paper is based upon the 
resolved motion rate control method [2, 3] in which the re
quired velocity of the end effector, s, is related to the joint 
variables 0, by the equation 

s = J0 (1) 

where J is a Jacobian 6x6 matrix, in a 6 degrees of freedom 
(DOF) robot, 9 is a vector of six joint1 speeds, and s is given 
by 

v 
s = 

fi 
(2) 

In this paper the word "joint" is used to denote a degree of freedom (or an 
axis of motion), whether it be a revolute joint or a prismatic joint. 
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where v is a three-element vector describing the velocity of the 
tool center point (TCP), and A is a three-element vector 
describing the angular velocity of the tool coordinate system. 

The vector s and the matrix J must be given in the same 
coordinate system, for example in the equation 

Sw — «v i (3) 

the subscript w implies that s and J are both given in the world 
coordinate system. 

2 The Jacobian in the Sensor Coordinate System 
The resolved motion rate control can be used for a sensor 

coordinate systems (SCS) as well. In the case of a sensor at
tached to the arm, the required velocity of the tool is provided 
by the sensor. The relationship between the tool velocity s, 
given in SCS, and the joint speeds is given by equation (1), but 
in this case J is expressed in the SCS. 

The reference velocity of the tool is obtained by detecting 
the deviation between the target and the actual positions of the 
arm with the aid of the sensor. Examples might be vision or 
force sensors. With a vision sensor attached to the arm, the ac
tual position and orientation of the target are detected. The 
velocity commands s are generated in the sensor in order to 
move the arm toward the object [4, 5], 

Another example is a force sensor attached to the end of the 
arm and used to assemble a shaft into a long hole. The re
quired force is constant during this assembly operation. The 
sensor measures the actual force between the robot tip and the 
body, and compares it to the required one. The error is 
translated into velocity command s, which causes a motion 
that eliminates, or reduces, this error [6], 

The required joint speeds are derived from equation (1) by 
inverting the Jacobian: 

) = J" (4) 

The computation of the Jacobian is based upon current 
joint variables (i.e., angles and link lengths) which are 
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Fig. 1 Two-link planar manipulator 

measured by the joint position detectors (e.g., encoders). 
Several manipulators are analyzed below to demonstrate the 

advantage of expressing the Jacobian J in the sensor coor
dinate system. 

Two-Joint Manipulators. The first example deals with the 
two-link planar manipulator used in SCARA2-type robots and 
shown in Fig. 1. Both rotary joints have the Z-axis as the axis 
of rotation, with dx and 02 the joint angles corresponding to 
joints 1 and 2. The lengths for links 1 and 2 are /[ and l2, 
respectively. The Jacobian matrix which relates the joint 
velocities to the Cartesian velocities in the world coordinate 
system is [7, 8] 

— /j sinflj - /jsini/' — l2sin\j/ 

/[COS0! + l2COS\p I2COS\j/ 
(5) 

where \j/ = dt + 82. 
Let us assume that a sensor located near the arm end pro

vides two velocities vx and vy which comprise the velocity vec
tor v (in SCS) at which the TCP should move 

ca (6) 

Note that in this particular case s = v. 
The relation between the velocity vector in the sensor coor

dinate system and the world coordinate system is 

Cs (7) 

and C is a transformation matrix. Eliminating s from equa
tions (1) and (7) and comparing the results with equation (3) 
yields 

j — i^ Jw 

In this particular case the transformation matrix is 

~cosi/< - sim/< 

sinxf/ cosi/< 

Substituting equations (5) and (9) into (8) yields 

C = 

/ : sin02 

l2 + llcosd2 

0 

/, 

(8) 

(9) 

(10) 

The derivation of the joint angle velocities from the sensor 
velocities is obtained by finding the inverse Jacobian from 
equation (10). 

1 

/,/,sin0, 

l2 0 

— (/2 + /iCOs02) /isin02 

(11) 

This result should be compared with the derivation of the 
joint velocities from the Cartesian velocities vx and vy given in 
the world coordinate system [8] 

1 

/, /, sin0. 

^COSl/' 

- (^COSf?! +/2COSl/<) 

/2sini/-

- (/jsinfl, +/2sim/') 

(12) 

Besides the simpler expression of J - 1 in equation (11) as 
compared with J - 1 in equation (12), there is another signifi
cant result: J" 1 is independent of 0,. In conventional SCARA -
type robots to which a sensor was added, that means 
eliminating real-time calculation of sin0j and zosft^, and con
sequently increasing the allowable velocity of the manipulator. 
However, if a SCARA robot is designed at the outset as an in
telligent robot operating with an appropriate sensor, then the 
designer might omit the encoder of joint 1. The relative posi
tion between the end effector and the object is measured con
tinuously by the sensor, and the joint position is not required 
for the velocity calculations. Since a typical SCARA robot 
contains only three servo-controller axes (0(, 02, and Z), sav
ing one encoder has an impact on the robot cost. 

Three-Joint Manipulators. Similar results are obtained 
when analyzing cylindrical and spherical robots. If the joint 
variables of a cylindrical robot are called 0! (base angle), d2 

(vertical translation), and d3 (horizontal translation), the 
Jacobian in sensor coordinates located at the arm end can be 
written as 

dj 0 0 
0 1 0 
0 0 1 

(13) 

where d3 is the variable length of the second link. Notice that 
neither 0, nor d2 appear in equation (13). 

The world coordinate Jacobian for a spherical robot is [8] 

— d3 sin0,cos02 

d3 COS0!COS02 

0 

— c?3cos0jsin02 

-d3sinOlsin02 
G?3COS02 

COS0[ COS02 

sm0, cos02 
sin02 

J„ = 

and the transform matrix is 

C = 
-sin0! — cos0[Sin02 cos0!cos02 

cos0j -sin0,sin02 sin0,cos02 
0 cos02 sin02 

(14) 

(15) 

The sensor coordinate system is defined in coordinate frame s 
as shown in Fig. 2. (K is pointing up in the direction of 02.) 
Substitution of equations (14) and (15) into equation (8) yields 
the Jacobian matrix as expressed in the sensor coordinate 
system 

(16) 
d3cos82 

0 
0 

0 
d, 
0 

0 
0 
1 

SCARA stands for selective compliance assembly robot arm. Notice that again 0, does not appear in equation (16), which 
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Fig. 2 Three-DOF spherical robot 

consequently eliminates real-time calculations of cos0, and 
sin0,. 

Although it has been shown above that omitting the first 
joint encoder is possible if J is computed in sensor coordinates 
and the motion commands are given in sensor coordinates as 
well, there might be practical reasons for avoiding the full im
plementation of this result. Such cases occur, for example, 
when the endpoint sensor cannot sense the entire workvolume, 
or when a joint-velocity signal is needed for the joint con
troller. In the first case, however, it is sufficient to add a low-
resolution encoder or a potentiometer to bring the endpoint to 
a region where the sensor is active. In the latter case, an inex
pensive tachometer can be mounted at the joint. Notice, 
however, that trigonometric calculations involving 0, are 
eliminated, which speeds-up the real-time computation. 

Another common outcome of the last two examples is that J 
is a diagonal matrix (Even if the sensor axes were to be chosen 
differently, each row and each column of J would have only 
one entry.) Having a diagonal matrix J means that each sensor 
output controls a single corresponding joint, and consequently 
complex real-time calculations are avoided. The matrix J is 
diagonal if and only if the joints move the arm end instan
taneously in orthogonal directions. 

In practice only three types of industrial robots satisfy this 
condition: Cartesian, cylindrical, and spherical arms. 
Therefore, the use of these types of robots is more appropriate 
for end-of-arm sensor-based tasks. The SCARA-type and ar
ticulated robots contain two parallel axes for rotation, and 
therefore their Jacobian is not a diagonal matrix. Never
theless, from the viewpoint of robot accessibility, 
manipulators could be ranked as follows: articulated, 
spherical, cylindrical, and Cartesian. As a consequence of 
these two features, a reasonable conclusion is that from con
trol viewpoint, a spherical coordinate arm is the most ap
propriate for 3-D sensor-equipped intelligent robot. The par
ticular application, however, must be considered when a robot 
is selected. 

3 The Jacobian Approximat ion in Six-Joint 
Manipulators 

In the previous section three-joint robot arms were discuss

ed. However, in order to position and orient the end effector 
in space, six joints are required. Accordingly we assume that 
the robot is equipped with a six-component sensor. The sensor 
is able to produce three components of the required linear 
velocity of the TCP in three orthogonal axes, and three com
ponents of the required rotational rates (i.e., angular 
velocities) about these axes. The three velocity components 
create the velocity vector v and the three rotational rates com
prise the vector fi. These six velocities are the required 
variables provided by the sensor. The velocities of the three-
arm-joints create the vector 6a, and the three velocities of the 
wrist comprise the vector dw. These four vectors are related by 

where J (the Jacobian in SCS) is a 6 x 6 matrix. Having ob
tained J, we may find the required commands 6, by inverting it 
to obtain 

The obvious problem with this method is thatan inversion of a 
6 x 6 matrix in real time is required. However, the structure of 
J enables the approximation of the 6 x 6 matrix inversion by 
two 3 x 3 inversions. (Approximations of non 6 x 6 matrices 
are also discussed in the examples of this text.) 

The matrix J can be partitioned into four 3 x 3 matrices 

where A represents the relationship between the arm joint 
velocities and the end effector translational velocities; W 
represents the relationship between the wrist joint velocities 
and the angular velocities of the end effector; B represents the 
effect of the wrist joint velocities on the end effector transla
tional velocity, which is obviously small compared with the ef
fect of the arm joints (namely, IIA0„ll> IIB0JI); finally, U 
represents the effect of the arm joint velocities on the orienta
tion of the end effector, which is small in practical motions 
(namley IIW0JI > W8J). 

The inverse of J is a 6 x 6 matrix consisting of four 3 x 3 
sub-matrices 

J ~ ' = [ M 5 ] - <20> 
where 

K = [ A - B W - 1 U ] - 1 

M = - W - ' U K 

N = [ W - U A - ' B ] - ' 

L = - A - ' B N . 

Since IIA0all> IIBAJ and IIW0JI > W6J the matrices K and 
N can be approximated by K = A - 1 and N = W _ 1 , which 
yields 

J "Lw-'UA"1 W-1 J (21) 

which means that the inversion of J was reduced to two 3 x 3 
inversions of A and W. In general, equation (21) can be used 
to control robots in which the matrices A and W are non-
singular, and it is not limited to 6-DOF robots. 

If this or other appoximations (which will be introduced 
below) are used in equation (18), the joints would not move in 
the desired velocity, and, in turn, the robot endpoint would 
not move exactly toward the target. However, since the robot 
is equipped with a sensor, the error is detected, and a new 
motion-command toward the target is generated in the next 
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Fig. 3 Trajectory of an approximated motion control algorithm 

iteration. This is shown in Fig. 3, where the dashed lines repre
sent the motion-commands and the solid line represents the ac
tual trajectory (subscripts indicate iterations). If certain condi
tions (discussed below) are satisfied, the robot endpoint will 
eventually reach the target. 

Notice that even when the correct value of J is used in equa
tion (18), an error is generated in practical robot systems 
which are of sampled-data type. The reason is that J changes 
continuously, but the sampled-data controller uses a constant 
J during the sampling period T. Since errors are anyhow 
generated, approximation methods which enable the reduction 
of T are justified. 

There are robots in which B = 0[9-ll] . In this case the ex
act solution is 

J"'=L_ w - i U A - i w - iJ (22) 

The matrix B is zero if and only if the three rotary axes of the 
wrist meet at one point and the Jacobian relates the velocities 
of this point to the joint speeds. 

Similarly, an exact solution of J ' is obtained if U = 0 is 
substituted in equation (21). However, U = 0 is valid only for 
a Cartesian robot. (If the arm has rotary joints, their cor
responding columns in U contain at least one non-zero ele
ment). As a conclusion of the last two observations we see that 
J may be diagonal in a Cartesian robot in which the three 
rotary axes of the wrist intersect at one point at which the sen
sor and the TCP are located. This is the ideal structure of a 
sensor-equipped robot from a motion control viewpoint, but 
such a robot only rarely meets the application requirements. 

4 Motion Control Algorithms 

This section proposes approximation algorithms and 
analyses their convergence conditions. 

4.1 Approximation With Orientation Error. Although 
we observed that U = 0 only for a Cartesian robot, let us 
assume that J" 1 is approximated by substituting U = 0 in 
equation (21) for any type of robot. Assuming that IAI ^ 0 
and IWI ^ 0 , this yields 

If the control program applies this approximation, the cor
responding velocity commands to the joints are 

^ A - ' v - A - ' B W - ' Q (24) 

d w = W - l 0 (25) 

Equations (24) and (25) are denoted henceforth as the 1st mo
tion control algorithm (MCA) or MCA1. 

Using the 1st MCA, the joint velocities yields the following 
tool velocities 

Y'=At)a + B6w (26) 

i l '=U0a-t-W0w (27) 

where v ' and fi' are the actual velocities of the sensor attached 
to the arm. 

The effect of the approximation is determined by 
substituting equations (24) and (25) into (26) and (27), which 
yields 

v ' = v (28) 

Q'=U(J„ + Q (29) 

That means that despite the usage of the approximation the 
exact desired velocity v is obtained, but it causes an angular 
velocity error of 

e = n - Q ' = - U e a (30) 

This error causes an error in the tool orientation. Substi
tuting equation (24) into (30) gives the error as function of the 
sensor commands 

e = - U A ~ ' v + Gfi (31) 

where 

G = UA"1BW^1 (32) 

As a result of this error the manipulator endpoint moves along 
the required trajectory with the wrong wrist orientation. 
However, since the manipulator is equipped with a sensor, the 
error can be detected and corrected. The determination of the 
conditions under which the manipulator is capable to correct 
the orientation error and converge to the target with the 
proper orientation is of extreme importance. Satisfying these 
conditions allow the motion control algorithm to apply two 3 
x 3 matrix inversions (i.e., equation (23)) rather than one 6 X 
6 inversion, thereby decreasing the control-program execution 
time and consequently speeding up the robot response. 

4.2 Convergence Conditions. It was shown that despite 
the use of the approximation, the required endpoint velocity is 
obtained, and therefore the TCP will reach the desired point. 
As a consequence, we can assume in the forthcoming analysis 
without loss of generality, that the TCP is in the desired posi
tion but with the wrong orientation. Since position was 
achieved, there is no need to manipulate the velocity v, namely 
v = 0. The control system of the robot is a discrete-type 
system. At each iteration /' the desired angular velocity 0 ( 0 is 
given by the sensor, and the corresponding joint velocities are 
calculated according to equations (24) and (25). The 
manipulator moves, but as a result of the approximation an 
error e ( 0 is generated at the end of the iteration. Notice that 
the matrices A, B, U, W, and G depend on the joint variables 
and have different values at each iteration. According to equa
tion (31) with v = 0, the error at the end of the first iteration is 

e(l) = G(0)0(l) (33) 

where G(0) represents the value of G before the first iteration 
(this value is constant during the iteration) and 0(1) is the 
orientation command during the first iteration. Subsequently, 
a new command $2(2) is generated by the sensor. As seen from 
Fig. 3 (the dotted line is a shifted vector 70!) the relationship 
between two successive commands is 

0(2) = 0(l) + /3,e(l) (34) 

where /3t is a scaler. The angular motions are depicted in Fig. 3 
in a planar configuration where subscripts indicate iterations. 
The scalar /3[ can be approximated for a large a ( 0 by 
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where Tis the iteration time, and a(i) is the angle about the 
0(i) axis between the actual and the desired orientations of 
the tool. Notice that 1 >/3>0 always exists (excluding the last 
step). At the end of the second iteration the error is 

e(2) = G(l)0(2) (36) 

Substitution of equation (34) into (36) yields 

e(2) = G(l)n(l)+JF(l)e(l) (37) 

where F(l) = 0xG(l). 
Similarly, the sensor command at the (/' + 1) iteration is 

Q ( i + l ) = n ( 0 + /3;e(0 (38) 

and the consequent error is 

e ( / + l ) = G( / ) f i ( /+ l ) (39) 

Substituting equation (38) into (39) yields 

e ( J + l ) = F ( / ) e ( / )+G( i )Q(0 (40) 

where 

F(/)=j8 /G(i) for i = l , 2 (41) 

Equation (40) represents a discrete linear process with initial 
conditions given by equation (33). In order to test con
vergence, it is considered as a control system. Stability of this 
system means that with bounded input fi the error e is bound
ed, and with zero input the error e converges to zero, namely, 
the manipulator will reach the target point with the correct 
orientation. 

It is known (e.g., [12]) that the linear time-invariant discrete 
system 

x ( j + l ) = Qx( / )+RU(/ ) (42) 

is stable if the eigenvalues \j of the p xp matrix Q satisfy the 
condition 

IX, l< l fory = l,2, . . . ,p (43) 

Equation (40), however, describes a time-varying process. 
Since (3, < 1 the matrix F ( 0 in equation (40) can be replaced 
by G(/) for stability tests, reducing thereby the time 
dependence. The elements of G(/) vary smoothly and slowly 
within the work volume. Therefore, at each instant the time-
varying parameters in equation (40) can be considered as being 
fixed at the current value and the process can be treated as 
time invariant. (By using this "freezing time" assumption 
designers have been very successful in designing autopilots 
[13].) This implies the following result which states a sufficient 
condition for the stability of a trajectory. 

Result 1. A sensor-equipped robot using the 1st MCA can 
reach a target point located within its work volume if the 
eigenvalues of the matrix G satisfy 

\\j(i)\<lforj=l, . . . ,k 

along the trajectory. 
In robot manipulators, k (the dimension of G) can be 1,2, 

or 3. This result might be used to determine an effective work 
volume in which all the eigenvalues satisfy IXI < 1 or to dic
tate parameter design of the manipulator (e.g., ratio between 
length of links) to guarantee convergence in the entire work 
volume. This is demonstrated in the continuation of this 
paper. 

An angular convergence trajectory to the target point is 
depicted in Fig. 3. The manipulator endpoint trajectory in this 
case is a straight line to the target, and the orientation correc

tions are taking place during the motion and after reaching the 
point. This situation is reversed in the next algorithm, in which 
the correct orientation is achieved, but the endpoint deviates 
from the straight-line trajectory. 

4.3 Approximation with Velocity Error. An alternative 
approximation algorithm might be the one given by equation 
(22), namely 

6a=A~ly (44) 

^ - W ^ ' U A - ' v + W-'fl (45) 

Equations (44) and (45) are denoted as the 2nd motion control 
algorithm or MCA2. 

The effect of this approximation is determined by 
substituting equations (44) and (45) into (26) and (27), which 
yields 

v ' = v + B0„, (46) 

Q ' = 0 (47) 

This means that when using this algorithm, the exact desired 
orientation is obtained, and the effect of the approximation is 
a velocity error 

e „ = v - v ' = - B ^ (48) 

Notice that Fig. 3 can apply to this approximation if instead of 
0 and a, the linear velocity v and a distance d are written in the 
drawing. 
Substituting equation (45) into (48) gives the velocity error as a 
function of the sensor commands 

e„ = H v - B W 'Q (49) 

where H is an m X m matrix defined by 

H = BW 'UA > (50) 

Sufficient convergence conditions of this algorithm can be 
summarized in the following result. 

Result 2. A sensor-equipped robot using the 2nd MCA can 
reach a target point located within its work volume if the 
eigenvalues of the matrix H satisfy 

\\j(i)\<lforj = l, . . . , m 

along the trajectory. 
The proof of this result follows along the lines of the proof 

of Result 1, with the assumption that 0 = 0 instead of v = 0. 

4.4 General Approximated Motion Algorithm. The 
matrix in equation (21) can also be used as a motion control 
algorithm: 

^ A - ' v - A - ' B W - ' Q (51) 

f J ^ - W - ' U A - ' v + W - ' O (52) 

Equations (51) and (52) are denoted as the 3rd motion control 
algorithm or MCA3. This approximation algorithm causes the 
following errors: 

e B = v - v ' = H v (53) 

and 

eH, = 0 - f i 1 = G f i (54) 

Comparing equations (53) and (54) with (49) and (31), 
respectively, one can see that the errors in this case are smaller, 
but the control algorithm requires more algebraic operations, 
which, in turn, result in longer sampling periods. 

Following the proof of Result 1, one might think that the 
convergence conditions in this case require that the eigen
values of both matrices G and H satisfy IXI < 1. However, 
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Fig. 4 Planar polar manipulator 

testing the eigenvalues of only one of these matrices is suffi
cient, as is explained below. 

Let us define: P = UA~' and Q = BW"1. From equations 
(32) and (50): G = PQ and H = QP. The matrices P and Q 
might be either square matrices with equal dimensions (3 x 3 in 
a 6-DOF manipulator), or matrices in which the number of 
rows in P equals the number of columns in Q, and vice versa. 
For example, if the dimensions of J in equation (19) are n x n 
those of A are mxm, and those of W are kxk, then the 
dimensions of P are kxm and those of Q are m xk (where n 
= m + &). (E.G., in a SCARA-type manipulator n = 4, m = 
3, and k = 1.) The resulting G is a k x k matrix and H is an m 
x m matrix. If m > k, then testing the eigenvalues of G is suf
ficient, and if m < k, then the test of H is sufficient; the excess 
eigenvalues (i.e., \m — k\) are zero [14], therefore satisfying 
the condition IXI < 1. 

The convergence conditions in this case are the following. 
Result 3. A sensor-equipped robot using the 3rd MCA can 

reach a target point within its work volume if all the eigen
values of either the matrix G or H satisfy IX (i) I < 1 along the 
trajectory. 

Based on the discussion above and on Results 1, 2, and 3, 
the following theorem states the sufficient condition for 
convergence. 

Theorem. A sensor-equipped robot using the 1st, 2nd, or 
3rd MCA can reach a target point within its work volume if 
the eigenvalues of either the matrix G or H satisfy IX(/)i < 1 
along the trajectory. 

According to this Theorem, if G and H have different 
dimensions then the test of the matrix with the smaller dimen
sions is sufficient regardless of the algorithm which is used. 
The selection of the appropriate MCA depends on the par
ticular application of the robot and on the structure of the 
manipulator as well as on the sensor sensitivity to velocity and 
orientation deflections. 

5 Examples 
The Theorem stated above might be used in determining the 

effective work volume or in the design of manipulators as is 
demonstrated next. 

5.1 Planar Polar Robot. As an illustrative example con
sider the 3-DOF planar polar robot shown in Fig. 4. A sensor 
is attached to the second link, and the equations are written in 
the sensor coordinate system. It should be noticed that the 
location of the coordinate system in which the equations are 
written does not change the convergence conditions. The Jaco-

(-180 

135" 

9 0 

-135 

-180 

£=0.5 d?_-

JH.4I d2 

• .N.4I d . 

i=Q5 d2 

Fig. S Convergence regions of planar polar robot 

bian which relates the TCP velocities (given in the sensor coor
dinates) to the joint speeds is 

0, 

-IS, 1 -IS, 

d2 + ic3 o ; /c3 
1 

1 0 | 1 

(55) 

cosO-i. Notice that the Jacobian is where S3 = sin03 and C3 
independent of 6{. 

The Jacobian in equation (55) can be partitioned into four 
submatrices (A, B, U, and W) shown with the dashed line (see 
equation (19)). In order to find the convergence condition of 
MCA1 (equations (24) and (25)), the eigenvalues of the matrix 
G have to be found. The matrix G is defined in equation (32), 
and in this case is a scalar 

G = -
/C, 

d2 + IC3 

Since G is a scalar we have G = X. 
In order to reach a target point while using the 1st MCA ap 

proximation, the following condition must be satisfied 
• IC3 • 

1X1 = <1 
, d2 + lC3 i 

For d2 > 0 two conditions are derived from equation (56) 

(56) 

e'>-f 
and 

C3> 
2/ 

(57) 

(58) 

The more restrictive convergence condition in this case is given 
by equation (58) and is illustrated in Fig. 5. Exactly the same 
convergence condition must be satisfied if the 2nd MCA or the 
3rd MCA are used. 

Simulation results of a polar robot using the 2nd MCA are 
shown in Fig. 6. The length of the second link is / = 0.2. The 
initial location in Fig. 6(a) is x = 0.3, y = 0.173, and orienta
tion = 60 deg. The target location is x = 0.4, y = 0.25, and 
orientation = 60 deg. At the initial location X = 0.50, and at 
the target location X = 0.45. The trajectory converges to the 
target point as shown in Fig. 6(a). In Fig. 6(b) the initial loca
tion isx = -0A5,y = 0.234, and orientation = 150 deg. The 
target location is x = 0.25, y = 0.35, and orientation = 150 
deg. At the initial location X = -1.5 , and at the final location 
X = -0.9. The convergence condition is not fulfilled and the 
trajectory diverges as seen in Fig. 6(b). Simulation results 
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Actual ^_s^ 
trajectory^ / r Target 

Fig. 6(a) Converging trajectory 

Actual 
trajectory 

^Target 

Y 

Fig. 6(b) Diverging trajectory 

Fig. 6 Simulation results of a planar polar robot controlled by the 2nd 
MCA 

Sensor 

sin 02 

Fig. 8 SCARA robot convergence regions 

show that if IXI < 1 at the initial and the target points the tra
jectory converges, and it is not necessary to check in advance 
the values of X along the trajectory. 

Notice from equation (58) that in the polar robot, if the 
designer guarantees that d2/l>2, then the robot converges to 
the target point in the entire work volume of the manipulator 
despite of using the approximation motion algorithms. 

5.2 SCARA Robot. The implementation of the approx
imation algorithms can be demonstrated on a SCARA-type 
manipulator (see Fig. 7). The sensor is attached to the second 
link and the Jacobian is written in the sensor coordinate 
system as follows 

l\S2 /3S3 

/ lC2 + /2+/3C3 

0 

1 

- / 3 S 3 

/2+ /3C3 

0 

1 

0 

0 

1 

0 

- / 3 S 3 

l3C} 

0 

1 

where S2 = sin82, S3 = sin#3, C2 = cos02. and C3 

Also in this case G is a scalar given by 

G = ^ 
•2 " 2 + «3"23 

Where S23 = sin(02+03) 
The convergence condition in this case is 

< 1 
' 2 " 2 •*" *3•->23 ' 

which yields the following two conditions: 

> 

"2 

d 

03 J 

(59) 

COS03 . 

(60) 

(61) 

(62) 

and 

> — (63) 

Fig. 7 SCARA-type robot 

_A 
s 2 " 2/3 

The more restrictive condition is given by equation (63) and 
is illustrated in Fig. 8. Notice that if S2 and S23 are both 
positive or both negative, the convergence condition is always 
satisfied. 

Two simulation results of a SCARA robot using the 2nd 
MCA are shown in Fig. 9. The link lengths in this case are /, = 
l2 = i3 = 0.4. The initial location in Fig. 9(a) is x = 1.10, .y = 
0.155, and the orientation is -21 .3 deg. The target point is x 
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Fig. 9(a) Converging trajectory 
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Fig. 9(b) Diverging trajectory 
Fig. 9 Simulation results of a SCARA robot controlled by the 2nd MCA 

= 1.116, y = 0.124, and the orientation is - 21. 3 deg. At the 
initial location X = 0.695 and at the target location X = 0.718. 
The trajectory converges to the target point as shown in Fig. 
9(a). In Fig. 9(b) the initial location is x = 1.0, y = -0.037, 
and the orientation is -50 deg. The target location is x = 
0.95, y = - 0.06, and the orientation is - 50 deg. At the initial 
location X = 1.62, and at the final location X = 1.70. The con
vergence condition is not fulfilled and the trajectory diverges 
as shown in Fig. 9(b). 

"25* 6 5 ' 85" 105' 145" 

Fig. 10 HIRATA ARH-300 robot convergence regions 

It is difficult to obtain a design rule which will guarantee 
convergence in the entire work volume of a SCARA type 
manipulator. In practical manipulators, however, the range of 
62 is limited. The minimal 62 dictates a maximum value of 
/3//2 for which convergence always exists despite of using the 
approximation algorithms. In the Hirata ARH-300, for exam
ple, 02 can vary in the limits 25 deg < 62 < 145 deg. The 
second link length is l2 = 275 mm. As a consequence if /3 < 
60 mm then the robot always converges to any target point in 
the entire work volume of the manipulator despite of using the 
approximate algorithms. With the increasing of /3, the region 
in which trajectories might diverge increases as seen in Fig. 10. 
Therefore it is recommended to work with a tool length /3 < 
60 mm when controlling the robot with one of the proposed 
MCA algorithms. In a case that /3 must be greater and con
vergence is required in the entire work volume, the range of 62 
should be reduced with the aid of available limit-switches. 

5.3 Six-DOF Robot. As an example of a 6-DOF robot 
consider a spherical robot with a wrist having three revolute 
joint axes intersecting at one point (P) as shown in Fig. 11. 
Assume that the robot is equipped with a sensor located at 
point P and is capable of measuring the required velocity and 
angular velocity of the TCP. 

The Jacobian which relates the TCP velocity to the joint 
variable speeds, given in the sensor coordinate system, is 

~^1 
vy 

vz 

o, 
Q, 

UJ 

d3C2 + lC2Cs-

— IS2S4S5 

— IC2S4S5 

0 

c2 

s2 

- IS2C4S5 0 

d,-

-ic4-

1 

0 

0 

IC5 

s5 

0 

0 

1 

0 

0 

0 

/C4S5 

IS4S5 

0 

0 

0 

1 

IS4C5 

-IC4C5 

~IS5 

c4 

s4 

0 

0 

0 

0 

S4S5 

— C4S5 

c5 

(70) 
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-90° 

Fig. 11 Six-DOF spherical robot 

The Jacobian may be partitioned into four 3 x 3 matrices (A, 
B, U, and W) defined in equation (19) and shown with the 
dashed line in equation (70). 
By using these definitions, the matrix G is derived from equa
tion (32) 

-90° 

Always converges 

Converges if C4> 0 ; check if C4>0 

X///A Converges if C4 < 0 ; check if C 4 < 0 

Fig. 12 Convergence regions of a six-DOF spherical robot 

/ 

det(,4) 
0 d3C2C5-lC2C\ 

0 -c?3S2C5 + /S2C
2
5 

W3 (^2^405 /C^C^OgOg 

W302^4*^5 ~r ' ^ 2 4*^5^5 

(71) 

where det(yl) d\C2 - d3lS Pc,c\ + 

The convergence conditions state that the eigenvalues of G 
satisfy IX,-1 < 1 0 = 1. 2, 3). After some algebraic manipula
tions and assuming that d3 > I and cos#2 > 0, the con
vergence conditions become 

C , C < - S , C 4 S , > 0 

and 

11 
>C« 

(72) 

(73) 

One can design a manipulator with d3 > 21, and then the 
restrictive condition becomes equation (72). Assuming that 65 

is limited by - 9 0 deg <05<9O deg, convergence regions in 
the robot work volume can be determined from equation (72) 
and are shown in Fig. 12. At least within 50 percent of the 
work volume convergence always exists. However, since in 
most practical jobs C4 will not contain values of + 1 and - 1 
along the same trajectory, the effective work volume is much 
larger. 

6 Conclusions 

Kinematic algorithms have been developed for the control 
of a robot equipped with a sensor located on its arm. It has 
been shown that when computations are performed in the sen
sor coordinate system, the algorithms become simpler and one 
joint variable is eliminated from the Jacobian matrix. This 
permits the removal of the respective encoder from the robot 
and thereby reducing its cost. 

From control viewpoint, the spherical manipulator has been 
found as the most appropriate structure for 3-DOF sensor-
equipped robots. In the spherical robot a complete decoupling 
of the joint command is achieved, which facilitate the control 
of this robot. 

Simplification of the motion control algorithms (and a con

sequent improved speed) of sensor-equipped robots can be ob
tained when approximations are used to solve the inverse 
kinematics. The subsequent inaccuracies in the trajectories can 
be corrected by the sensor during the robot motion toward the 
target point. Accordingly, three motion control algorithms are 
proposed. However, error analysis reveals that convergence to 
the target point is not always guaranteed. A Theorem which 
states the stability conditions of a trajectory has been found. 
Robot parameters (e.g., tool length or range of joint angles) 
can be selected to ensure stable convergence to any target 
point when controlling the robot with the simple approxima
tion algorithms. 
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