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Abstract 
The operation of large manufacturing systems with buffers has two goals: to meet production target and 
minimize the work-in-process (WIP) inventory. This paper introduces a novel approach, based on optimal 
control theory, to achieve both goals simultaneously by on-line adjustment of the production rate of each 
machine. In this method the state variables are the buffer levels, the control variables are the machine 
production rates, and the output variable is the target production (the demand). The method is evaluated 
through simulations under various conditions, and compared with other methods in the literature. The 
results demonstrate that the proposed method can successfully produce low WIP inventory than other 
methods, while the required production demand is still fulfilled. It is also shown that the method is capable 
of providing feasible solutions for large manufacturing systems – a goal that is harder to achieve with the 
current known method. 
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1 INTRODUCTION 
In manufacturing systems, random occurrences of 
machine failure cause disturbances to production. To 
reduce the impact of the disturbances, buffers are 
implemented between machines. However, the 
introduction of buffers raises the level of work-in-process 
(WIP) inventory, and, in turn, WIP increases the 
operating cost. Therefore, while the goal of the system 
operation is aimed at meeting the production 
requirements, it is also desired to simultaneously reduce 
the WIP.  
A fuzzy-logic controller to minimize both WIP and 
production surplus was designed utilizing evolution 
strategies, but under the (unrealistic) assumption that 
machines do not fail [1]. In the research done by CIRP 
members on Production Planning and Control (PPC) 
systems [2, 3], the dynamics of the PPC systems were 
analyzed, and a controller for throughput and WIP 
adjustment was presented. However, this research 
considered the whole system as a one-machine-one-
buffer system, and did not study the failure of each 
machine in large systems. 
For a system consisting of unreliable machines and finite 
buffers, Kimemia and Gershwin proposed a feedback 
control policy of continuous production flow based on 
solving a stochastic optimal control problem [4, 5]. Given 
a constant desired demand rate, the production rate of 
each machine is computed in real time to meet a specific 
production surplus level, called the hedging point. 
Through an approximation of the discrete material flow 
with a continuous flow, two models of manufacturing 
systems were analyzed in [6], which have advantages 
over the conventional scheduling approaches in two 
aspects: complexity of the manufacturing system and 
vulnerability to schedule disruptions. These methods, 
however, are not applicable for large systems. 
To minimize the buffer levels and meet the demand rate, 
a control policy called two-boundary control was 
developed, based on dynamic programming, for a two-
machine-one-buffer tandem line where the buffer size is 
infinite [7]. Bai and Gershwin [8] approximated the 
hedging point control policy to a linear program. In 
addition, an algorithm for determining desired buffer sizes 
and hedging points was presented. Simulation results 
were displayed for a two-machine line and for a five-

machine line. Nevertheless, there is a need for a 
production flow control policy which is capable of being 
applied to large systems, as well as providing a trade-off 
between reducing WIP and keeping the production close 
to the target demand. 
In this paper a novel control policy utilizing optimal 
control theory is introduced to obtain a low-level WIP 
while keeping the system throughput close to the 
required demand. The control policy generates off-line a 
library of optimal controllers which are selected according 
to the actual states of the machines (working and not 
working) and control in real time the production rates of 
the machines that are operational. The proposed policy is 
shown to be effective for large manufacturing systems. 
The new control policy is evaluated through simulations 
and compared with results presented in the literature [8]. 
 
2 APPROACH 

2.1 Stochastic Manufacturing Systems and Control 
Consider a serial manufacturing line with unreliable 
machines and finite buffers (Figure 1). 
 

 
Figure 1: A serial manufacturing line. 

 
The system is subject to random events: machine 
failures and repairs, which cause abrupt fluctuations in 
the production. The machine states are binary: machine 
operates = 1; machine fails = 0. The system has state 
variables (xi): the buffer levels (which are proportional to 
the WIP) and the output production surplus. The 
production rate of each machine is a control variable (ui). 
Thus, a serial system with m machines and m-1 buffers 
has m states (m-1 buffer states and one output state) 
and m control variables.  
Since machine failures are random and subject to a 
probability distribution, the manufacturing system is 
considered to be a stochastic system. To minimize WIP 
and fulfill the production demand, the problem was 
usually formulated as a stochastic optimal control 
problem in the literature [4, 7]. However, the major 
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difficulty of this problem is the solution technique. 
Dynamic programming is generally employed to find the 
optimal solution. However, the solution to this problem 
becomes infeasible when the system consists of many 
machines and buffers, which, in practice, is the general 
situation in the manufacturing industry.  
Our approach is to divide the stochastic optimal control 
problem into multiple deterministic optimal control sub-
problems, based on the instantaneous machine states. 
The machine state combination randomly changes. 
When a change of the machine states is detected, 
controllers are selected from a library of optimal 
controllers that were pre-determined according to the 
machine states. The selected optimal controllers 
determine the production rates of the machines, based 
on the demand rate and on-line measurement of the 
buffer levels, as shown in Figure 2.  
 

 
Figure 2: Schematics of the control policy. 

 
For example, in a two-machine-one-buffer line, the 
machine states change among the four possible 
combinations (i.e., (1 1), (0 1), (1 0), (0 0)). For the 
machine state combination (0 0), in which both machines 
fail, there is no controller selected. For each of the other 
three combinations, an optimal controller is selected from 
the library. Each optimal controller determines the 
machines’ production rates. Detailed description of the 
control policy for the general case of the m-machine line 
will be provided in the next section. 

2.2 Control Policy 
Consider a serial line with m machines and m-1 buffers 
as depicted in Figure 3. The line produces only one part 
type; a constant production demand rate d is given. 
 

 
Figure 3: A serial line with m machines. 

 
In our approach we are using a virtual buffer Bm at the 
end of the line. The level of this buffer is the cumulative 
difference between the actual production of machine m 
(which is the line throughput) and the target demand. 
Let the level of buffer i be the continuous state variable xi 
and the production rate of machine i the control variable 
ui. The dynamics of the system are 
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where xm is the level of the virtual buffer Bm. This variable 
can be either positive or negative, and is zero indicating 
the demand is fulfilled, while the level of the physical 
buffer, xi, is bounded by 0 and a given buffer size xi

max: 

)1...1(0 max −=≤≤ mixx ii    (2) 

Machines have production capacity constraints. The 
production rate of machine i cannot exceed a given 
maximum value ui

max when the machine is operational 
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where αi is the machine state (0 or 1).  
In the duration of each machine state combination, the 
part flow is obstructed by the failed machine(s), and thus 
the line can be considered as the union of sub-lines, 
where the machines within a sub-line are all operational. 
Sub-lines are separated by the failed machine(s) and 
have no stochastic disturbances. The controllers in the 
optimal controller library are designed for these sub-lines. 
The overall objective of the control policy is to control the 
levels of the system buffers while keeping the virtual 
buffer level close to zero. This objective is realized 
through the optimal controllers for the sub-lines. 
For each sub-line, there is a corresponding optimal 
controller. The objective of the controller is to track given 
constant references of states (including xm) and inputs. 
Since the dynamics in the sub-lines are linear, linear 
quadratic optimal control problems are formulated. The 
objective function to be minimized is represented as 
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where x and u are the vector forms of the states and 
inputs, respectively, and xr and ur are the vector forms of 
the references of the states and inputs, respectively. The 
matrices Q and R are diagonal. The machine state 
combination starts at t0 and ends at tf. 
The sub-lines have different attributes when they contain 
the most upstream machine (machine 1) and the most 
downstream machine (machine m). There is no part flow 
coming into the sub-lines that do not include machine 1, 
and there is no part flow leaving the sub-lines that do not 
include machine m. Therefore, the sub-lines and their 
corresponding controllers can be classified into the 
following four categories, based on their different 
attributes, and the references (xr and ur) are determined 
accordingly. Each category may contain multiple 
controller types. Note that the sub-lines may occur in 
many machine state combinations, so the number of the 
controllers can be greatly reduced compared to the 
number of machine state combinations when the 
manufacturing line is large. 
Category I: Working line with all the machines 

operational (αi = 1, i = 1 ... m) 
The reference of the virtual buffer level is zero to meet 
the required production. For the physical buffer, the 
desired level is chosen to be the half of its size. The half 
inventory is to protect the adjacent downstream machine 
from starvation, and the half space is to protect the 
adjacent upstream machine from blockage, since the 
adjacent machines at the both ends are operational.  
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The desired machines’ production rates are the demand 
rate to maintain the desired production flow in steady 
state. 
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Note that there is only one type of the controller in this 
category. 
Category II: Working sub-lines that include machine m 

and exclude machine 1  
(αi = 1, i = j ... m, 2 ≤ j ≤ m) 

Here machine j is the most upstream machine in the sub-
line. If machine j -1 is assumed to be repaired at the end 
of the duration, all the inventory levels (including buffer j -
1) are preferred to be consumed to zero before that time. 
The reference of the virtual buffer level is still zero for 
demand.  
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The reference of the machine’s production rate is zero to 
reduce the utilization of the machine if possible. 
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There are m-1 types (j = 2 ... m) of controllers in this 
category. 
Category III: Working sub-lines including machine 1 and 

excluding the machine m  
(αi = 1, i = 1 ... k, 1 ≤ k ≤ m-1) 

Here machine k is the most downstream machine in the 
sub-line. Since fulfilling the demand is not possible in this 
category, buffer k is desired to be full at the end of the 
duration such that the inventory can be used when 
machine k+1 is repaired. For the other buffers, the 
references are chosen to be half full for the same reason 
in Category I.  
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The references of the machines’ production rates are the 
same as in Category II. 
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There are m-1 types (k = 1 ... m-1) of the controllers in 
this category. 
Category IV: Working sub-lines that do not include both 

machine 1 and machine m  
(αi = 1, i = j ... k, 2 ≤ j ≤ k ≤ m-1) 

Here the most upstream and downstream machines in 
the sub-line are machine j and k, respectively. Since the 
entire inventory level will not reduce in the duration, the 
references of the buffer levels are chosen such that the 
inventory in the upstream buffers is moved to the most 
downstream buffers as much as possible. The reference 
of the machine’s production rate is the same as in 
Category II. 
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Note that there are (m-1)*(m-2)/2 possible types of the 
controllers in this category. 
Table 1 illustrates all the possible combinations of the 
machine states and their corresponding controller types 
in a four-machine line.  
In summary, for a serial line with m machines, the total 
number of the controller types is the summation of the 
ones in the four categories. 
 
 
 
 
 
 
 

Table 1: Controller types in a four-machine line. 

Machine 1 Machine 2 Machine 3 Machine 4
State State State State I II III IV

1 1 1 1 1
0 1 1 1 3
1 0 1 1 2 1
1 1 0 1 1 2
1 1 1 0 3
0 0 1 1 2
0 1 0 1 1 1
0 1 1 0 3
1 0 0 1 1 1
1 0 1 0 1 2
1 1 0 0 1 1
1 0 0 0 1
0 1 0 0 1
0 0 1 0 2
0 0 0 1 1
0 0 0 0

Controller Type

N/A

Machine State Combination

 
 
Figure 4 displays the relation between the number of 
machines versus the number of controller types. Note 
that when m = 20, there are 210 types controllers, while 
the total possible machine state combinations are 220, 
which is over one million. This shows the control policy is 
feasible for a large system. 
 

Number of Controller Types
= 1+2*(m-1)+(m-1)*(m-2)/2
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Figure 4: Number of controller types vs. number of 

machines in the line. 
 

2.3 Linear Quadratic Optimal Control with Input and 
State Constraints 

The optimal controllers for the sub-lines have been 
formulated in Section 2.2. However, because of the 
constraints on the inputs and the states in (2) and (3), the 
conventional linear quadratic regulation (LQR) 
techniques can not be applied to obtain the optimal 
solutions. Model predictive control (MPC) is one of the 
popular solution techniques for complex constrained 
control problems in the literature. In this paper, an 
improved approach of MPC, utilizing multi-parametric 
quadratic programming (mp-QP), is employed to solve 
our linear quadratic optimal control problems with 
constraints on inputs and states in discrete-time systems 
[9]. Unlike conventional MPC which requires on-line 
computation, the mp-QP approach moves the 
computation efforts off-line, and provides control inputs in 
an explicit state feedback form. This approach divides 
the state space into multiple partitions. For any partition i, 
two associated constant matrices Fi and Gi are 



calculated.  When the state x is located in partition i at 
any time step, the feedback control law is given by 

ii GxFu +=  (12) 

Prediction horizon is a choice for the discrete-time finite 
horizon problems. When a greater prediction horizon is 
selected, the complexity of state partitions increases and 
the off-line computation takes more time to complete. 
 
3 EXAMPLES AND SIMULATION RESULTS 
In this section, the control policy will be implemented on a 
two-machine line and a five-machine line through 
simulations performed in a commercial package called 
WITNESS. These two lines were analyzed in [8]. The 
machines have exponential failure and repair 
distributions. Simulation results with 95% confidence 
intervals are obtained through 20 replications, each with 
a different random number seed. Each replication runs 
10,000 time-units with a warm-up period of 3,000 time- 
units. The values of simulation parameters, as well as 
units, are selected from [8] in order to compare the 
results in the same conditions. Note that the matrix R in 
the objective function is chosen to be small compared to 
Q, so reducing machine usage is not considered for the 
current study. The prediction horizon is chosen as 1 to 
reduce computation time. Numerical results indicate that 
they are not sensitive to the choice of prediction horizon.  

3.1 Two-machine-one-buffer Line 
Machines’ parameters are shown in Table 2. Since the 
machine’s MTTF is greater than MTTR, the sub-line in 
Category I occurs most frequently. Thus, varying the 
weights in Category I has the most influence on 
performance. 
 

Table 2: Machines’ parameters used in simulation. 

 
Figure 5 shows the graphs of the average buffer level 
and the throughput versus the buffer size, while varying 
the weight of the physical buffer in Category I (q11). In 
“Capacity,” all the machines produce at their maximum 
production rates. It produces an upper bound on 
throughput and also results in the largest average buffer 
level. The results are generated from a software package 
called PAMS [10], a production analysis tool created in 
our center. Note that here the throughputs in Capacity 
are used as the demand rates for the control policy. 
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Figure 5: Effect of various weights. 
 
When the weight increases, the average buffer level 
reduces closer to the half of the buffer size, but the 
throughput also suffers. In general, with a choice of the 
moderate weight, the average buffer level can reduce up 
to 30%, compared with Capacity, while the loss of the 
throughput is less than 3%.  
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Figure 6: Comparison with [8] for a two- machine line. 
 
Figure 6 compares the simulation results with the ones in 
Bai and Gershwin [8], with various demand rates. The 
demand rates are listed in Table 3, so are the buffer 
sizes, which are determined by the demand rates in [8]. 
 

Table 3: Demand rates and buffer sizes from [8]. 

 Mean Time To 
Failure (MTTF) 

Mean Time To 
Repair (MTTR) 

Maximum 
Production Rate

Machine 1 100   (day) 20   (day) 2.5   (lots / day) 

Machine 2 10     (day) 2     (day) 2.2   (lots / day) 

Demand Rate 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1 

Buffer Size 1 1 1 1 1 4 10 16



Machines’ parameters are the same in Table 2 except 
machine 2’s maximum production rate is 1.25 lots/day 
here. The weights in Category I and III are adjusted to 
obtain best results. The information of the throughput is 
not available in Bai’s simulation results. Note that the 
demand rates in Table 3 are not used for calculations in 
Capacity; the results change because of the different 
buffer sizes. When the demand rate is close to the 
capacity of the line, the throughput suffers a loss about 
4% of the demand rate, and the average buffer level has 
a 8% reduction compared with Bai’s result. When the 
demand rate is not close to the capacity, the difference 
between the throughput and the demand rate is less than 
1%, while the reduction of the average buffer level is up 
to 47%. In general, the proposed control policy always 
produces lower average buffer levels than Bai’s 
approach. 

3.2 Five-machine Line 
In the simulation of a five machine line, all the machines 
are identical: MTTF = 10, MTTR = 2 and umax = 2, 
chosen from the case 5 in [8]. Figure 7 compares the 
results when the demand rate is 1 and all the buffer sizes 
are all 1. 
 

Demand = 1.0; Buffer Size = [1 1 1 1];
Throughput: Capacity = 1.121, Ma = 0.9987
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Figure 7: Comparison with [8] for a five- machine line. 

 
Compared with Bai’s result, the control policy reduces 
19% of the total average buffer levels, and the loss of the 
throughput is only 0.13%. In this example, the demand 
rate (= 1.0) here is not very close to the upper bound in 
Capacity (= 1.121). Note that varying weights does not 
change the simulation results distinctly in the five-
machine line example. 
 
4 SUMMARY 

In this paper, a novel control policy for manufacturing 
system operation has been presented. It is based on 
modelling an m-machine line as an m-order state-space 
system and applying optimal control theory to adjust the 
WIP while keeping the production demand. For a serial 
line with random machine failures, the policy divides the 
stochastic system into multiple deterministic sub-lines, 
each operating optimally for the duration in which the 
machine state combination does not change. The 
simulation results demonstrate that the proposed policy 
successfully generates low WIP while the demand is still 
fulfilled. The policy shows better performance than the 
one presented by Bai and Gershwin in [8], and is capable 
of being easily applied to large manufacturing systems. 
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