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Now, proceed with n = 2; 3, and 4 with similar arguments by iterating
from lines 6 to 4. Finally, we obtain

brk r(4) < 1

sj r(4) > 0

bk t(4) < 1

sj t(4) > 0

sj m(4) > 0

and

bi(4) < bi(3); i = krr; rkpp; krm; jr; ktm; jp

si(4) > si(3); i = rkp; jrr; jpp; kt; jpm;kr:

The base case is proved. Assume now that n > 0

si(n) > sk(n� 1); i 2 Is; bi(n) < bi(n� 1); i 2 Ib: (26)

Then, from Lemma 2 ,we obtain

si(n+ 1) > sk(n); i 2 Is; bi(n+ 1) < bi(n); i 2 Ib:

Therefore, si(n) and bi(n) aremonotonically increasing or decreasing,
respectively. Since they are bounded by 0 and 1 [14], they are conver-
gent.
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Productivity of Parallel Production Lines With
Unreliable Machines and Material Handling

Theodor Freiheit, Yoram Koren, and S. Jack Hu

Abstract—Using parallelism in bufferless production lines can improve
productivity, with significant productivity gains achieved with crossover.
However, including crossover in the line implies additional material-han-
dling requirements that may reduce the availability of the system. This
paper examines if parallel systems with crossover between the stages
are more productive than parallel systems without crossover between
the stages, when one considers the availability of the additional material
handling required for the crossover. The minimum material-handling
availability necessary for inclusion of crossover is determined for a given
parallel line’s configuration such that productivity can be maximized.

Note to Practitioners—Two approaches in configuring parallel manufac-
turing lines are currently being used in industrial plants. These have been
characterized as the Japanese approach of parallel independent cells of se-
rial operations, and the European approach of a serial line with each oper-
ation being duplicated in parallel. The European approach has a produc-
tivity advantage over the Japanese approach when considering machine
failures within each operation. However, the European approach requires
more material handling which increases the configuration complexity and
can reduce productivity. Amathmodel is developed to determine which ap-
proach is best for a given line design when line length is defined by process
planning and line balancing, and line width is determined by throughput
requirements. The analysis is limited to cell configurations that do not use
buffers internal to the cell.

Index Terms—Availability, material handling, productivity, system anal-
ysis and design.

I. INTRODUCTION

Configuration is an important, sometimes overlooked, aspect of the
manufacturing-system design that can significantly effect its perfor-
mance. Its effect has been studied by Koren et al. [1] who noted its im-
pact on such parameters as reliability, productivity, quality, scalability,
convertibility, and cost. For manufacturing-system design decisions in-
volving capital expenditures, one of the most important parameters is
productivity. Traditionally, system productivity is estimated from the
availability of the system elements. In automated machining transfer
lines, and to a lesser extent in assembly lines, productivity shortfalls
due to equipment failures are customarily addressed by the inclusion
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of buffers. However, the trend toward lean manufacturing, with its pull
production control philosophy and just-in-time inventory levels, im-
plies a need and desire to reduce and eliminate buffers, especially in in-
dustries such as computer chip manufacturing where inventory is very
expensive. Parallelism in production stages is another method to im-
prove system productivity without the inclusion of buffers [2].

System parallelism can be realized by designing independent serial
production lines and duplicating them in parallel, each with an inde-
pendent material-handling system servicing all its stations. Parallelism
can also be realized in the operations by designing the system as a series
of stages of duplicate stations placed in parallel. Here, a common ma-
terial-handling system transfers the work-in-process between stages,
and each stage has additional material handling to transfer the work-in-
process to each station, i.e., permits crossover between the serially
equivalent lines. Both these configurations can be classified as par-
allel-serial configurations [3], and can include hybrid combinations of
both serial and parallel elements. Because of the potential for station
failures, significant improvements to productivity are obtained from the
crossover between the production stages by taking advantage of the du-
plication of operations.

In order to facilitate this crossover, flexible material handling is
required to distribute work-in-process between the parallel stations.
However, the increased flexibility and control required for this
distribution implies greater complexity and associated potential
for breakdowns in material handling, and a subsequent impact on
system productivity. Uncertainty concerning this tradeoff between
the additional complexity of material handling and the magnitude of
improvement to productivity when crossover is present has resulted in
different manufacturing corporations implementing one or the other
of the two different parallelism strategies. Therefore, there is a need to
understand which approach is more productive when considering both
the increase in productivity due to crossover, and the decrease due to
additional material-handling complexity.

Material handling and its influence on the productivity or effective-
ness of a manufacturing system has been extensively studied. Much of
this research is on the performance of automated guided vehicles in
flexible manufacturing systems. Johnson and Brandeau [4] conducted
a survey that examined published research on the design and control
of automated storage and retrieval, and guided vehicle systems. Most
research has concentrated on scheduling and resource allocation such
as the number of automated guided vehicles (AGVs) necessary to min-
imize service wait time, selection of service nodes, or partitioning of
networks. Examples include examining scheduling policies on the per-
formance of serially configured, duplicate stations [5], determining the
number of work centers to be serviced by an automated component de-
livery vehicle [6], and determination of an optimal AGV fleet size for
an flexible manufacturing system (FMS) when keeping the number of
empty trips minimal [7]. Very few published papers model the mate-
rial-handling system as having a potential for failure, although Beamon
[8] cites reliability as an important performance measure. An exception
is Beschorner and Glüer [9], whomodel network bottlenecks whenma-
terial system elements fail. However, their model does not include the
probability that a particular system element fails. Another exception is
Savsar [10], who examined the performance of a single flexible man-
ufacturing cell with unreliable production machine and material han-
dling. There is a need to understand the role of unreliable material han-
dling in system performance in complicated system configurations.

This paper models bufferless parallel–serial systems with and
without crossover using combinatorial algebra. The unreliability
of the system elements, as repairable systems, is modeled through
their availability. As a result, the models aggregate all failures
into time-based failures, and operationally-based failures are not
distinguished. Moreover, the model addresses paced configurations
with single process plans, typical of automotive machining lines and
other similar manufacturing. Following the introduction, the modeling

Fig. 1. Schematic example of physical layout of (a) parallel lines and (b)
parallel stations.

Fig. 2. Schematic logical layouts of (a) parallel lines and (b) parallel stations.

approach is presented. Next, several cases are presented and discussed.
A summary of the design recommendations concludes the paper.

II. APPROACH

An example of the physical layout of twelve machines configured
into three parallel lines or three parallel stations is given in Fig. 1. In
the parallel lines configuration [Fig. 1(a)] each line of four stations is
serviced by its own conveyor, while in the parallel stations configura-
tion [Fig. 1(b)] each set of three stations is serviced by its own gantry,
while material handling between the stages is conducted through a line
conveyor. A logic diagram of system elements for the two examples is
given in Fig. 2. Each conveyor or gantry is treated as a serial element,
as their failures can be modeled as a common cause failure to all sta-
tions in an independent parallel line or to the parallel stations system.
The productivity of different system configurations is predicted by

determining its productive system states. Since the system is paced, it
produces at the rate of the slowest station or stage in a given state. The
productivity of a configuration is defined as the normalized expectation
of the production rate of all system states. Productivity P , also called
system availability or effectiveness, can be mathematically expressed
as [3]

P =
1

�max

s

i=1

�i Pr(ith state) (1)

where s is the number of system states, �i is either zero for a nonpro-
ductive state or the production rate associated with the ith state, �max
is the highest production rate of the states, and Pr(ith state) is the prob-
ability that the ith state occurs.
Applying (1), the productivity of the parallel lines configuration is

determined by summing all permutations of the probability that one or
more lines are operational and scaling it for its effective production rate.
The production rate is scaled to normalize the production rate to one
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when it is at its maximum, i.e., when all lines are functional. Scaling is
achieved in parallel systems by multiplying by the ratio of the equiva-
lent number of functioning lines to total number of lines, e.g., i=m in
(2). When all stations have the same availability A then, (1 � An) is
the probability of any one line being down. With m lines in parallel,
each with n serial stations or stages, the productivity is

Pk lines =

m

i=1

m

i
(1� An)m�iAni i

m
= An: (2)

Note that placing serial lines in parallel does not in, and of itself, im-
prove productivity, although it does reduce productivity variance [2].
As can be seen in Fig. 2(a), the influence of material-handling avail-
ability on the parallel lines configuration is an additional serial compo-
nent, giving the productivity with material handling as

Pk lines = AcA
n: (3)

Generalizing (3) for each stage (operation) having a unique avail-
ability, the productivity is modeled

Pk lines = Ac

n

i=1

Ai: (4)

The productivity of a parallel station’s configuration is determined
by summing all the permutations of the probability of having func-
tioning stations in each stage and scaling it by the effective production
rate of the bottleneck stage.When all stations have the same availability
and production rate, the productivity is given by

Pk sta =
1

m
(1� A)nm

m

k=1

m

a =k

. . .

m

a =k

�
m

a1
. . .

m

an

A

1� A

q

; with q =
n

j=1

aj (5)

where the number of stages is n and the number of stations in each
stage is m. The summation with index k accounts for the bottleneck
that occurs from theminimum number of functioning stations in a stage
across all stages.

As can be seen in the logic diagram of Fig. 2(b), the material han-
dling for the parallel stations configuration is modeled by including a
single station between each stage that represents the gantry, or other
material handler such as a robot or conveyor (here, forward is referred
to generally as a gantry). Since each stage is serviced by its own gantry,
and the gantries and line conveyors function as serial elements, the pro-
ductivity of the parallel stations configuration with material handling
is modeled

Pk sta =Ac(Ag)
n 1

m
(1�A)nm

m

k=1

m

a =k

. . .

m

a =k

�
m

a1
. . .

m

an

A

1� A

q

; with q =
n

j=1

aj (6)

where Ag is the gantry and Ac is the line conveyor availability. Equa-
tion (6) can be generalized for unique stage availability, giving a pro-
ductivity model

Pk sta = Ac(Ag)
n

m

a =1

. . .

m

a =1

m

a1
. . .

m

an

�

n

j=1

(1�Aj)
m�a

n

j=1

A
a

j

min(a1; . . . ; ak)

m
:

(7)

Examining (3) and (6), both parallel line’s and parallel station’s con-
figurations have a conveyor availability. If the conveyor availability is
the same for an independent line as for stage-to-stage material transfer
in the parallel stations, (3) and (6) can be set equal and the gantry avail-
ability necessary to provide equivalent productivity for the two types
of lines can be calculated as shown in (8) at the bottom of the page.
Equation (8) can be generalized for unique stage availability by using

(4) and (7), giving the minimum gantry availability for equivalent pro-
ductivity as

A�g = D�1

n

i=1

Ai

1=n

where

D =

m

a =1

. . .

m

a =1

m

a1
. . .

m

an

n

j=1

(1� Aj)
m�a

�

n

j=1

A
a

j

min(a1; . . . ; ak)

m
: (9)

An approximation of the contribution of variation in the availability
of the stations, gantries, and conveyors can be factored into the produc-
tivity equations by applying a Taylor Series expansion, known as the
propagation of error technique [11]

� = �(x1; x2; . . . ; xj)

�� �= � �x ; �x ; . . . ; �x +
1

2

j

i=1

@2�

@x2i
�2

x (10)

where � is a function of a set of independent variables each with a
mean � and a standard deviation �. This approximation is sufficient

for a small variation, a coefficient of variation of C
�

�0:2. Treated in-
dividually, variation in each station, gantry, or conveyor will have no
effect on the overall productivity, as the second partial derivative of (7)
or (9) is zero. However, if the availabilities of the stations or gantries are
co-dependent, it can have a major impact on productivity. For example,
if they share a common repair resource such as repair personnel whose
presence varies from day to day, e.g., day versus evening staffing levels
or absenteeism, all stations have a common variation in availability.
Applying (10) to (3), the mean productivity of parallel lines with

station and conveyor variation is

Pk�lines = AcA
n 1 +

n(n� 1)

2
C2

A (11)

A�g =
An

1

m
(1� A)nm m

k=1

m
a =k . . .

m
a =k

m

a1
. . .

m

an
A

1�A

q

1=n

; with q =
n

j=1

aj (8)
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Fig. 3. Minimum gantry availability required for equivalent productivity in configurations with and without crossover.

Fig. 4. System productivity at different gantry availabilities.

where CA is the coefficient of variation of the stations. Note that
(11) implies that variation in the mean increases the productivity of
a system. This is because the exponent in (3) magnifies the effect of
changes in availability, giving proportionally more productivity to
increases in availability than losses in productivity with decreases in
availability. In practice, this is offset somewhat by the lower mean
availability implied by combining both day and evening shifts than
when compared to using only the day shift availability mean.

Applying (10) to (6), the mean productivity with parallel stations
with station, gantry, and conveyor variation is

Pk sta = Ac(Ag)
n 1

m
(1� A)nm

�

m

k=1

m

a =k

. . .

m

a =k

m

a1
. . .

m

an

A

1� A

q
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Fig. 5. Productivity tradeoff between station and gantry availability.

Fig. 6. Minimum gantry availability with station and gantry variability.

� 1 +
1

2
Y1C

2

A +
n(n� 1)

2
C
2

A

with

q =

n

j=1

aj

Y1 = (1�A)�2[A2
mn(mn� 1)� 2Aq(mn� 1) + q(q � 1)] (12)

where CAg is the coefficient of variation for the gantry. Note that in
both (11) and (12), conveyor availability variation does not influence

the mean productivity. Equations (11) and (12) can be used to calculate
the required minimum gantry availability, A�

g , in the same form as (8).
In general, if the material-handling availability exceeds A�

g , then, a
parallel stations strategy will provide higher productivity. Likewise, if
the material-handling availability is less than A�

g , then, a parallel lines
strategy (no crossover) will provide higher productivity.

III. RESULTS AND DISCUSSION

Whether to include crossover in a configuration to maximize its
productivity can be determined by comparing the availability of the
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crossover material-handling system to the A�

g of the system configu-
ration. Fig. 3 plots contour lines for the minimum gantry availability
required for different line configurations to benefit from crossover
in improving productivity. For illustrative purposes, the figure plots
(8) with a constant station availability of 0.90. The x-axis is the
number of stages, while the y-axis is the number of lines or stations
in parallel. To use this plot, determine the system’s gantry availability
and locate the line associated with it on the plot. If the configuration
length-width point falls below left of the contour line labeled with the
gantry availability, then a parallel lines (no crossover) configuration
provides greater productivity. If the configuration length-width point
falls above right to the contour line, a parallel stations configuration
(crossover) will provide greater productivity. For reference, a typical
gantry availability taken from actual industrial experience is 0.98,
representing a minor repair of 15 min once a day, and a major repair
taking one day occurring once a year. Each configuration length-width
point is labeled with itsA�

g , that is, the gantry availability that provides
equal productivity between crossover and no crossover configurations.

The influence of gantry availability on the productivity of the system
can be seen in Fig. 4, which plots the productivity of a production line
of length eight and width four. Each station has an availability of 0.9
and the line conveyor has an availability of 0.99.When the gantry avail-
ability is less thanA�

g , the productivity is higher for a no-crossover con-
figuration (which do not require gantries). When gantry availability is
greater than A�

g , a crossover configuration has better productivity. As
can be seen, at high levels of gantry availability, parallel configurations
that do not include buffers have significant increases to productivity
that are gained from the presence of crossover.

Fig. 5 shows the relationship between station availability and gantry
availability for a line of length n = 6 and widthm = 3. As is expected,
at low gantry availability, parallel-line configurations are more produc-
tive. Further, at high station reliability, very high gantry availability is
necessary for the parallel-lines configuration to provide higher produc-
tivity. Fig. 5 implies that in parallel station configurations, if the stations
in a given stage have a lower availability compared to their neighbors,
a good design strategy is to insure that such stages are serviced by a
gantry with high availability to increase overall system productivity.

Fig. 6 plots A�

g for a line of length n = 6, width m = 3, and a
mean station availability of A = 0:9, when the coefficient of variation
of the station and gantry availability is varied. This plot implies that
if the gantry availability varies greatly from day-to-day, lower gantry
availability is necessary to achieve higher productivity with crossover,
and therefore a parallel stations strategy is more effective. Likewise, if
the station availability varies greatly from day-to-day, the higher gantry
availability required implies a parallel lines strategy is more effective.
The best strategy when both station and gantry availability variation is
high is a parallel stations configuration, as the gantry variation is more
dominant.

IV. CONCLUSION

To take advantage of parallelism in a bufferless manufacturing
system, a chief design objective should be to maximize material-han-
dling equipment availability. Without highly available gantries, the

significant productivity gains that are achieved from crossover cannot
be obtained. Design considerations should include accessibility to
down stations for safe repair without interrupting the gantry and its
service of other stations within the stage, appropriate selection of
material-handling technologies to achieve the desired availability
relative to the station availability, and the relinquishing of crossover
as unnecessary when sufficiently high station availability can be
designed into the system.
Note that this analysis does not address the economic tradeoff to im-

proved productivity. The additional cost of gantries, while providing a
greater productivity, may not be justifiable for the additional profit that
they make possible. Finally, an additional benefit of parallel stations
that has not been part of themodels in this paper is the inherent ability of
parallel lines to provide the right scale of production under a changing
demand environment. Adding stations in parallel at the bottleneck op-
eration can address shorter term throughput requirements more feasibly
than the addition of a parallel line. System designers should consider
this possibility in determining its gantry specifications, allowing for
modular or expandable material handling, especially if sales growth is
anticipated over the life cycle of the product.
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