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Abstract— Sequence planning is an important problem in
assembly line design. It is to determine the order of assembly
tasks to be performed sequentially. Significant research has
been done to find good sequences based on various criteria,
such as process time, investment cost, and product quality.
This paper discusses the selection of optimal sequences based
on complexity introduced by product variety in mixed-model
assembly line. The complexity was defined as operator choice
complexity, which indirectly measures the human performance
in making choices, such as selecting parts, tools, fixtures, and
assembly procedures in a multi-product, multi-stage, manual
assembly environment. The complexity measure and its model
for assembly lines have been developed in an earlier paper
by the authors. According to the complexity models devel-
oped, assembly sequence determines the directions in which
complexity flows. Thus proper assembly sequence planning can
reduce complexity. However, due to the difficulty of handling the
directions of complexity flows in optimization, a transformed
network flow model is formulated and solved based on dy-
namic programming. Methodologies developed in this paper
extend the previous work on modeling complexity, and provide
solution strategies for assembly sequence planning to minimize
complexity.

I. INTRODUCTION

As an important step in assembly system design, sequence
planning, or sequence analysis [1] is to determine which
assembly task should be done first, which should be done
later. Proper determination of the sequence may help balance
the line, reduce equipment investment, and ensure better
product quality. Significant research has been done to find
effective methodologies in search of good sequences.

The process of assembly sequence planning (ASP) begins
with the representation of an assembled product, for example,
by a graph or adjacency matrix. One type of graph, liaison
graph, was first introduced by Bourjault in [2] to establish
the relationships among component parts in an assembly. The
liaison graph is a graphical network in which nodes represent
parts and lines (or arcs) between nodes represent liaisons.
Each liaison represents an assembly feature where two parts
join. The process of realizing such a liaison or liaisons is
referred as an assembly task. Hence, the problem of ASP
is to find a proper order of realizing the liaisons, i.e., the
sequence of tasks to completely assemble the product.
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Another assembly representation is the precedence graph.
A precedence graph is a network representation of all prece-
dence relations among all assembly tasks. A sample graph
is shown in Fig.1. In the graph, nodes represent tasks, and
there exists an arc (i, j) if task i is an immediate predecessor
of task j.
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Fig. 1. Precedence Graph of a Ten-Task Assembly (From [3], pp.5)

An immediate predecessor is defined as follows [4]. If
i ≺ j, then task i is known as a predecessor or ancestor of
task j; and j is known as a successor or descendent of i.
If i is a predecessor of j, and there is no other task which
is a successor of i and predecessor of j, then i is known
as an immediate predecessor of j. A task may have more
than one immediate predecessor and can be started as soon
as all its immediate predecessors have been completed. By
definition, if a task has two or more immediate predecessors,
every pair of them must be unrelated (i.e., no precedence
relationship) in the sense that neither of them is a predecessor
of the other. Moreover, if i is a predecessor of j, and j is a
predecessor of k, then obviously i is a predecessor of k. In
notation, we write: i ≺ j, j ≺ k ⇒ i ≺ k. This property of
precedence relationships is called transitivity. By transitivity,
therefore, we can determine the set of predecessors, or the
set of successors of any task from the set of immediate
predecessors of each task (i.e., from the precedence graph).

Typically, one precedence graph corresponds to multi-
ple, sometimes, a large number of sequences. With those
candidate sequences, engineers select the best sequences
according to a certain criterion. Among the criteria, one
of the earliest attempts is to balance the line. Scholl [3]
presented a thorough treatment of assembly line balancing.
Other engineering knowledge are also incorporated into
the selection process [1], for example, removing unstable
subassembly state to avoid awkward assembly procedures
and improve quality; eliminating refixturing & reorientation
to reduce non-value added costs; imposing a subassembly to
allow parallel processing; and so on.

Besides the attentions on a single product, researchers
have also developed sequence planning methodologies for a
group of similar products in a family. Gupta and Krishnan [5]
showed that careful assembly sequence design for a product
family helped to create genetic subassemblies which can
reduce subassembly proliferation and the cost of offering
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product variety. Rekiek et al. [6] and Lit et al. [7] developed
an integrated approach for designing product family (includ-
ing assembly sequences) and the assembly system at the
same time so that multiple products could be assembled in
the same line. Hence, according to which factor is critical to a
specific line design problem, new criteria are often developed
for the selection of good sequences.

In this paper, we discuss sequence planning to reduce
manufacturing complexity in manual, mixed-model assembly
line design. The criterion is called operator choice com-
plexity, which measures the uncertainty presented to human
operators when they are making choices, such as selecting
parts, tools, fixtures, and assembly procedures in a multi-
product, manual assembly environment. The complexity
measure and its model for assembly line was developed in
an earlier paper by the authors [8] and will be reviewed
in the next section. According to the complexity models
developed, assembly sequence determines the directions in
which complexity flows and thus proper assembly sequence
planning can reduce complexity.

The objective of this paper is to develop methodologies of
finding the optimal assembly sequences to minimize system
complexity. The paper is structured as follows. Section II
provides background information on complexity measure and
model, and shows the opportunity of minimize complexity
by assembly sequence planning. Section III discusses the
problem formulation and the preliminary attempts to solve
the problem based on an integer program (IP). Due to
the difficulties of handling constraints in the IP, Section
IV presents a network flow program formulation, which
transforms the original problem into a solvable traveling
salesman problem with precedence constraints expressed
by an extended precedence graph. Then, procedures are
developed to solve the transformed problem using dynamic
programming. Session V demonstrates a numerical example
for the ten-task case study shown in Fig.1. Finally, Section
VI concludes the paper and suggests the future work.

II. BACKGROUND ON MANUFACTURING COMPLEXITY

In this section, we introduce the complexity model devel-
oped for mixed-model assembly lines in an earlier paper [8].
The model considers the product variety induced manufac-
turing complexity in manual assembly lines where operators
have to make choices according to the variants of parts, tools,
fixtures, and assembly procedures.

A complexity measure called “Operator Choice Com-
plexity” (OCC) was proposed to quantify the uncertainty
in making the choices. The OCC takes an analytical form
as an information-theoretic entropy measure of the average
randomness (uncertainty) in a choice process. It is assumed
that the more certain the operator is about what to choose in
the upcoming assembly task, the less the complexity is, and
the less chance the operator would make mistakes. Reducing
the complexity may help to improve assembly system per-
formance. In fact, the definition of OCC is also similar to
that of the cognitive measure of human performance in the
Hicks-Hyman Law [9], [10].

A. Measure of Complexity

In a very general form, the measure of complexity, OCC
is a linear function of the entropy rate of a stochastic process
(choice process). The choice process consists of a sequence
of random choices with respect to time. The choices are
modeled as a sequence of random variables, each of which
represents choosing one of the possible alternatives from a
choice set. In fact, the choice process can be considered
as a discrete time discrete state stochastic process X ′ =
{Xt, t = 1, 2, . . .}, on the state space (the choice set) Xt ∈
{1, 2, . . . ,M}, where t is the index of discrete time period,
M is the total number of possible alternatives which could be
chosen during each period. More specifically, Xt = m,m ∈
{1, 2, . . . ,M}, is the event of choosing the mth alterative
during period t. With the above notation, the general form
of OCC is:

H(X ′) = lim
N→∞

1
N

H(X1, X2, . . . , XN )

= lim
N→∞

H(XN |XN−1, XN−2, . . . , X1) (1)

The second equivalence sign holds if the process is stationary
[11].

In the simplest case, if the sequence is independent,
identically distributed (i.i.d.), Eqn.(1) can be reduced to an
analytical entropy function H . The H function takes the
following closed form:

H(X) = H(p1, p2, . . . , pM ) = −C ·
M∑

m=1

pm · log pm (2)

where pm , P(X = m), for m = 1, 2, . . . ,M , which is the
probability of choosing the mth alternative if the distribution
of X is given; (p1, p2, . . . , pM ) describes the distribution of
X , which is also known as the mix ratio of the (component)
variants associated with the choice process.

B. Complexity Propagation

Base on the idea that variety causes complexity in a
multi-stage manufacturing system, we define two types of
complexity for each station:

• Feed complexity: Choice complexity caused by the
feature variants added at the current station.

• Transfer complexity: Choice complexity of the current
station caused by the feature variants previously added
at an upstream station.

The propagation scheme of the two types of complexity is
depicted in Fig.2, where, for station j, the feed complexity
is denoted as Cjj (with two identical subscripts), and the
transfer complexity is denoted as Cij (with two distinct
subscripts to represent the complexity of station j caused
by the variants added at an upstream station i). Transfer
complexity exists because the feature variant added on the
upstream station i has been carried down to station j, and
may affect the process of realizing other feature at station j.
The effects can cause, for example, accessory part selections,
tool changeovers, fixture conversions, or assembly procedure
changes. By definition, the transfer complexity can only
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flow from upstream to downstream, but not in the opposite
direction. In contrast, the feed complexity can only be added
at the current station with no “transfer” behavior.
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Fig. 2. Types of Complexity

C. System Level Complexity Model
With the two types of complexity defined, we can de-

rive a system level complexity model to characterize the
interactions among multiple sequentially arranged stations.
Consider an assembly line having n workstations shown in
Fig.3. The stations are numbered 1 through n sequentially
from the beginning of the line to the end. The mix ratio, i.e.,
the percentages of component variants added at each station,
is known. Using Eqn.(2), we can obtain the entropy H for
the variants at each station according to their mix ratios (by
assuming an i.i.d. component build sequence).

Station 1 Station j-1...

H1  

H0
Station j Station j+1 Station n...

Hj-1  

Hj+1   Hn

j,1H1   

j,j-1Hj-1  

j,0H0 

j+1,jHj  

n,jHj      
Incoming Complexity
Outgoing Complexity

Transfer Complexity

Hj  

Station 1 Station j-1...

H1  

H0
Station j Station j+1 Station n...

Hj-1  

Hn

C1,j   

Cj-1,j   

C0,j   

Cj,j+1  

Cj,n      

Transfer Complexity

Hj

Feed Complexity

Hj+1   

Fig. 3. Propagation of Complexity at the System Level in a Multi-Stage
Assembly System

In Fig.3, each directed arc stands for a stream of transfer
complexity, Cij , flowing from station i to j (Cij can be
zero). Hence the total complexity at a station is simply the
sum of the feed complexity at the station and the transfer
complexity from all the upstream ones. For station j, the
total complexity is:

Cj = Cjj +
∑
∀i:i≺j

Cij (3)

According to the definition of transfer complexity, if
component variants added at station i cause choices during
the assembly operations at station j, we have:
Cij = aij ·Hi, for i = 0, 1, 2, . . . , n− 1; j = 1, 2, . . . , n (4)

where,

Hi − Entropy of component variants added at station i;
H0 − Entropy of variants of the base part;
aij − Coefficient of interaction between assembly

operations at station j and variants added
at station i, i.e.,

aij =

 1 Variants added at station i has an
impact on station j, and i < j

0 Otherwise

Therefore, the values of Cij’s are determined by the
following two steps.

Step 1:Determine the value of Hi, which depends on the
mix ratio of component variants added at station
i. As we have mentioned earlier, for component
variants with an i.i.d. build sequence, Eqn.(2) can
be used to calculate the Hi levels. In other words,
Hi is determined by the assignment of the assembly
task at station i.

Step 2:Determine the value of aij , which depends on the
relationship between the component variants added
at station i and the process requirements at station
j, which, in turn, is related with the assignment of
assembly task at station j.

The two-step procedure of determining Cij makes it dif-
ficult to formulate an easy-to-solve optimization problem to
minimize total system complexity since different sequences
will result in different Cij’s. In addition, the number of
candidate sequences can be quite high and it is computa-
tionally prohibitive to exhaustively evaluate all of them to
find the one with minimum system complexity. Therefore,
methodologies and algorithms are needed to search for the
optimal sequences.

To begin with, we set up a sequence planning problem
as follows. We consider an assembly system, having n
assembly tasks, denoted as 1 to n. Tasks are to be arranged
sequentially in an order subject to precedence constraints,
such as the constraints expressed by the precedence graph
in Fig.1, where n = 10. Additionally, to make the problem
comparable to the original problem in Fig.3, we assume each
task corresponds to one and only one station, and vice versa.

According to the multi-stage complexity model in Fig.3,
transfer complexity may be found between every two tasks.
The complexity becomes effective only from upstream tasks
to downstream ones. For example, in Fig.4, when task i
precedes task j (also denoted as i ≺ j), there is transfer
complexity flowing from task i to j (denoted as an arc from
node i to j). In other words, when task j is performed after
task i, it is also possible that the assembly process for task
j requires choices in parts/tools/fixtures/assembly procedures
according to the variants previously installed by task i. Using
the notation of transfer complexity in Fig.2, we know that
the amount of complexity incurred in the above scenario
is Cij . On the other hand, it is also possible for transfer
complexity, Cji, to exist and flow from task j to i if j ≺ i.
Obviously, only one of the two scenarios will take place at
one time. Thus, although transfer complexity can exist in
either directions, one and only one of the values in the pair
(Cij , Cji) is effective for each assembly sequence.

i j

Ci,j

... ... ...

j i

Cj,i

... ... ...

ijji CC ,, ≠

i j

Cij

... ... ... j i

Cji

... ... ...

(a) (b)

(a)

(b)

Fig. 4. Transfer Complexity between Two Assembly Tasks i and j, (a)
Cij if i ≺ j, (b) Cji if j ≺ i
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Hence, the assembly sequence determines the directions
in which transfer complexity flows, and hence the total
system complexity. In the following, we discuss a simplified
assembly sequence planning (ASP) problem to minimize
complexity.

III. PROBLEM FORMULATION

In this section, we discuss the assumption and formula-
tion of the sequence planning problem proposed above. In
addition, an integer program has been formulated as the first
attempt to solve the problem. However, the attempt was not
successful, which opened the further discussions in Session
IV.

A. Assumption: Position Independent Choice Complexity

For simplicity and practical reasons, we propose an as-
sumption of position independence for transfer complexity.
That is, the values of Cij and Cji depend solely on the
relative positions of the two tasks i and j, not the tasks
in between, nor their absolute positions in the assembly
sequence. Although the assumption seems quite restrictive,
it is applicable for assembling customized products with
highly modularized components such as the final assembly
process of automobiles, home appliances, and electronics.
Because of the simplification, the computational effort to find
optimal solution is greatly reduced and the problem becomes
manageable as well.

Under the above assumption, we are able to determine
all the values of transfer complexity between every pair of
assembly tasks. For the example of the ten-task assembly
system described in Fig.1, a node-node cost array can be
formed as shown in Fig.5 to collect all the transfer com-
plexity values, where Cij corresponds to the cell (i, j) at
row i and column j. For each feasible assembly sequence,
the system complexity then can be found by the summation
of all the effective complexity, i.e.,

∑
Cij , where (i, j) ∈

{(i, j)|i ≺ j}. If no precedence constraint is present, there
exist n! feasible assembly sequences. It is obvious that when
the constraints are less stringent, the number of feasible
sequences can become quite large.

1 2 3 4 5 6 7 8 9 10
1 C12 C13 C14 C15 C16 C17 C18 C19 C1,10
2 C21 C23 C24 C25 C26 C27 C28 C29 C2,10
3 C31 C32 C34 C35 C36 C37 C38 C39 C3,10
4 C41 C42 C43 C45 C46 C47 C48 C49 C4,10
5 C51 C52 C53 C54 C56 C57 C58 C59 C5,10
6 C61 C62 C63 C64 C65 C67 C68 C69 C6,10
7 C71 C72 C73 C74 C75 C76 C78 C79 C7,10
8 C81 C82 C83 C84 C85 C86 C87 C89 C8,10
9 C91 C92 C93 C94 C95 C96 C97 C98 C9,10
10 C10,1 C10,2 C10,3 C10,4 C10,5 C10,6 C10,7 C10,8 C10,9

1 2 3 4 5 6 7 8 9 10
1 X X X X X X X
2 X X X X
3 X X X X X X
4 X X X X X
5 X X X X
6 X X X
7 X X X
8 X X
9 X
10

1 2 3 4 5 6 7 8 9 10
1 X Y Y X X X X X X
2 Y Y Y Y X X X X
3 Y Y X X X Y X X X
4 Y Y X X Y X X X
5 Y X Y X X X
6 Y Y X X X
7 Y Y Y Y X X X
8 X X
9 X
10

Fig. 5. Transfer Complexity Values between any Two of the Ten Tasks

Among all the feasible assembly sequences, our objective
is to find an optimal one with minimum system complexity.
Briefly, the optimization problem for the ASP is the follow-
ing.

Program 1:
Minimize: System complexity Z =

∑
(i,j)∈{(i,j)|i≺j} Cij

With respect to: Assembly sequence
Subject to: Precedence constraints

B. Problem with Integer Program Formulation

Because of the imposed precedence constraints, Program 1
can be viewed equivalently as finding a node covering chain
(or tour) in the precedence graph of Fig.1 with minimum
summation of effective complexity flowing from node i to
j, where i ≺ j. Accordingly, an integer program can be
formulated as follows.

Program 2:
Decision variables:
xij =

{
1 Task i is assigned prior to task j
0 Otherwise

Minimize Z(x) =
∑

∀i,j Cijxij

Subject to:
(i) xij + xji = 1,∀i, j
(ii) xij ∈ {0, 1}
(iii) If (i1, i2), i2, (i2, i3), . . . , in−1, (in−1, in) forms

a tour in the precedence graph, then
xi1,i2 = xi1,i3 = . . . = xi1,in−1 = xi1,in

= 1
xi2,i3 = . . . = xi2,in−1 = xi2,in = 1

. . . . . . . . . . . .
xin−1,in

= 1

Constraints (i) and (ii) ensure one and only one task is
assigned to a station, constraint (iii) determines the directions
of complexity flows. Because of the difficulties in handling
constraint (iii) of Program 2, the ASP problem in the above
direct formulation is difficult to solve. Attempts have been
made to use the methods from network flow modeling
to simplify the above problem. That is, we add all the
complexity values as flows on the arcs of the precedence
graph, such as the one in Fig.1, then solve a minimum flow
problem accordingly.

IV. A NETWORK FLOW PROGRAM FORMULATION

To begin with, we assume the values of transfer complexity
between every pair of assembly tasks are known. A node-
node cost array for complexity as in Fig.5 can be formed to
collect all these values, where Cij corresponds to the cell
(i, j) at row i and column j. However, due to precedence
constraints, some of the cells in the array are inadmissible,
i.e., if it is infeasible for task i to precede task j, we denote
the cell (i, j) as inadmissible, and assign it an ∞ complexity
value. Finding all these inadmissable cells and purging them
can greatly simplify the original problem. Thus, a procedure
is developed below.

A. Procedure of Purging Inadmissible Cells

It takes three steps to find and purge inadmissible cells
using the transitivity property of precedence mentioned in
Section I.

Step 1:For row i, mark with X in the jth column for all
j, where j ∈ Ji = {j|i ≺ j} (Ji is the set of
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nodes with a precedence relationship with node i,
including implicit transitivity relationships).

Step 2:For row i, {i, j} is a pair of unrelated elements if
the jth row is unmarked. The meaning of unrelated
pair is that either task i could be assigned before
task j, or vice versa. The incurred complexity of
these two scenarios is Cij or Cji respectively. Find
out both cell (i, j) and (j, i) and mark them with
Y. Fig.6 shows the resulting array after Steps 1 and
2.

1 2 3 4 5 6 7 8 9 10
1 C12 C13 C14 C15 C16 C17 C18 C19 C1,10
2 C21 C23 C24 C25 C26 C27 C28 C29 C2,10
3 C31 C32 C34 C35 C36 C37 C38 C39 C3,10
4 C41 C42 C43 C45 C46 C47 C48 C49 C4,10
5 C51 C52 C53 C54 C56 C57 C58 C59 C5,10
6 C61 C62 C63 C64 C65 C67 C68 C69 C6,10
7 C71 C72 C73 C74 C75 C76 C78 C79 C7,10
8 C81 C82 C83 C84 C85 C86 C87 C89 C8,10
9 C91 C92 C93 C94 C95 C96 C97 C98 C9,10
10 C10,1 C10,2 C10,3 C10,4 C10,5 C10,6 C10,7 C10,8 C10,9

1 2 3 4 5 6 7 8 9 10
1 X X X X X X X
2 X X X X
3 X X X X X X
4 X X X X X
5 X X X X
6 X X X
7 X X X
8 X X
9 X
10

1 2 3 4 5 6 7 8 9 10
1 X Y Y X X X X X X
2 Y Y Y Y X X X X
3 Y Y X X X Y X X X
4 Y Y X X Y X X X
5 Y X Y X X X
6 Y Y X X X
7 Y Y Y Y X X X
8 X X
9 X
10

Fig. 6. Resulting Array after Steps 1 and 2

Step 3:By now, all the unmarked cells are inadmissible
cells. Mark them with ∞ and restore the corre-
sponding cost coefficients with appropriate sub-
scripts to the rest of cells, and shadow the cells
which were marked with X for later use.

B. Equivalent Network Flow Model

It is observed that the complexity costs in the non-
shadowed cells are formed in pairs; in each one of the
feasible solutions, one and only one of them are included
in the total system complexity cost function. However, the
complexity values in the shadowed cells are imposed by
precedence constraints either explicitly or implicitly; there-
fore, all of them are by all means counted in every feasible
solution.

The above observation implies one of the ways to simplify
the complexity cost array without changing the original
problem. That is, we simply set all the shadowed cells
to zero, see Fig.7. Then the only change to the objective
function of the original optimization problem in Program 2
is of a constant, which does not affect the optimal solutions.
In fact, the equivalent argument for the simplification is to set
complexity from i to j to zero if the precedence constraint
requires i to precede j either explicitly or implicitly (through
transitivity), i.e., Cij = 0 for i ≺ j.

The cells with denoted complexity cost in Fig.7 are
the ones forming an unrelated pair. Draw directed, dotted
arcs between i and j in both directions if {i, j} is such
an unrelated pair, and assign flow values Cij , Cji to the
associated arcs respectively. An extended precedence graph
is obtained as shown in Fig.8. Notice that the flows on
the solid arcs are the complexity values between two tasks
with explicit precedence relationships, which are all zero
due to the simplification stated in the previous paragraph.
However the flows on the dotted arcs are the complexity

1 2 3 4 5 6 7 8 9 10
1 Y1,1 0 C13 C14 0 0 0 0 0 0

2 ∞ Y2,2 C23 C24 C25 C26 0 0 0 0

3 C31 C32 Y3,3 0 0 0 C37 0 0 0

4 C41 C42 ∞ Y4,4 0 0 C47 0 0 0

5 ∞ C52 ∞ ∞ Y5,5 0 C57 0 0 0

6 ∞ C62 ∞ ∞ ∞ Y6,6 C67 0 0 0

7 ∞ ∞ C73 C74 C75 C76 Y7,7 0 0 0

8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y8,8 0 0

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y9,9 0
10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Infeasible
1 2 3 4 5 6 7 8 9 10

1 Y1,1 0 C1,3 C1,4 0 0 0 0 0 0

2 ∞ Y2,2 C2,3 C2,4 C2,5 C2,6 0 0 0 0

3 C3,1 C3,2 Y3,3 0 0 0 C3,7 0 0 0

4 C4,1 C4,2 ∞ Y4,4 0 0 C4,7 0 0 0

5 ∞ C5,2 ∞ ∞ Y5,5 0 C5,7 0 0 0

6 ∞ C6,2 ∞ ∞ ∞ Y6,6 C6,7 0 0 0

7 ∞ ∞ C7,3 C7,4 C7,5 C7,6 Y7,7 0 0 0

8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ Y8,8 0 0

Fig. 7. Reduced Complexity Cost Array

values between every unrelated pair of tasks, which may
take on non-zero values.

Solid Arc

Dotted Arc

Fig. 8. Extended Precedence Graph

The graph is an equivalent network flow model where the
objective is to find a tour which has the least flow cost.
This is because each of the feasible solutions corresponds
to a path satisfying the following properties in the extended
precedence graph.

1) The path is directed, i.e., the travel must follow the
direction of the arrows;

2) The path must visit every node one and only once;
3) The path must have the solid arcs directed forward.
Properties 1 and 2 are required simply due to the def-

inition of a precedence graph. In other words, the path is
Hamiltonian. Property 3 is imposed because the solid arcs
are the explicit precedence relationships (ten in total for the
example) which must be satisfied. Once these precedences
are satisfied, all the implicit precedence relations will hold
automatically, i.e., the precedence constraints specified by
the original precedence graph are satisfied. For example, by
inspection, one of the feasible solutions is 1-2-3-4-5-6-7-8-
9-10. By stretching the path from the extended precedence
graph, we find all the solid arcs are directed forward, see
Fig.9(a). However, an infeasible solution violating property
3 is also illustrated in Fig.9(b): a path satisfying properties
1 and 2 is taken with the sequence of nodes being 1-4-7-
3-2-5-6-8-9-10. By stretching the path again, the solid arcs
of (2, 7) and (3, 4) are found to be in the reverse direction.
Thus property 3, i.e., the constraint in the original precedence
graph, has been violated.

Once the constraints are satisfied, the objective value is
computed by counting all the active flows. The active flow
is defined as the flow on the dotted arc whose direction is the
same as that of the path. In fact, the active flow represents
the effective transfer complex in the unrelated pair. Take the
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Fig. 9. Stretched Path of (a) a Feasible Solution, (b) an Infeasible Solution

example in Fig.9(a), the active flows are C13, C14, C23, C24,
C25, C26, C37, C47, C57, and C67. Therefore, the objective
value of the solution is,

Z = C13 + C14 + C23 + C24 + C25 + C26 (5)
+C37 + C47 + C57 + C67 + constant

The reason for adding the constant in the above expression
follows from the arguments (of simplification) in the use of
the reduced complexity cost array in Fig.7.

In conclusion, by combining properties 1 and 2 with
property 3, the equivalent network flow model transforms
the original formulation (Program 2) to a problem of finding
a Hamiltonian tour in the extended precedence graph, and
at the same time, subject to the constraints imposed by the
original precedence graph. The problem is then similar to
what is widely known as the traveling salesman problem with
precedence constraints (TSP-PC) [12], which can be solved
using Dynamic Programming (DP) with some modifications.

In addition, by using the transformation, we gain the
advantage of greatly reducing the number of non-zero, finite
cells in the complexity cost array. For the purpose of assem-
bly sequence planning, this reduction significantly simplifies
the work of evaluating the transfer complexity values by the
procedures discussed about Eqns.(1) and (2). For the ten-task
example, only the transfer complexity of the pairs {1, 3},
{1, 4}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 7}, {4, 7}, {5, 7},
and {6, 7} needs to be evaluated. Moreover, as we shall
see shortly, the transformation also provides the means of
finding state transition costs in DP, which makes our problem
comparable to the classical TSP-PC with Cij being the arc
length.

C. Solution Procedures by Dynamic Programming

Here we reformulate our problem and restate it with the
notations similar to that of the classical TSP-PC. First, we ap-
pend a ”dummy” node 0 that has no transfer complexity from
or to the other nodes, and connect it with the starting nodes
(ending nodes) with forward (backward) arcs according to
the precedence constraints. The starting node (ending node)
is defined as the node having no predecessor (successor).
In our example, the starting nodes are 1 and 3, and the
ending node is 10. Thus, we add node 0 with forward arcs
(0, 1), (0, 3), and backward arc (10, 0) to the graph in Fig.8.
Next, let the extended precedence graph be G = (N ,A),
which is a directed graph, where N = {0, 1, 2, . . . , n} is

the node set, A is the arc set. Cij ≥ 0, (i, j) ∈ A is the
complexity incurred if task i precedes task j, i.e., node i
is visited prior to j (denoted as i ≺ j). By convention, let
Cii = ∞,∀i ∈ N to eliminate self-loops. Finally, for each
node i ∈ N , precedence relationships defined by the original
precedence graph (or, equivalently the solid arcs in Fig.8) can
be expressed by means of a set of nodes (Π−1

i ⊂ N ) that
must be visited before node i, or a set of nodes (Πi ⊂ N )
that must be visited after node i.

The ASP problem is then cast as one of the variants of
the classical TSP-PC in [12] as to find a Hamiltonian tour
starting from node 0, visiting every node in Πi ⊂ N before
entering node i (i ∈ {1, 2, . . . , n}), and finally returning to
node 0. The objective is to find a feasible tour that minimizes
the sum of the complexity incurred. However, it is important
to note that instead of calculating the sum of the costs on its
arcs (along the traveling path) as in the classical problem,
we compute the sum of Cij’s, where (i, j) ∈ A and i ≺ j.
This presents difficulties in handling the state transition cost
in developing DP procedures. For that, we need to ensure
the following two conditions:

• Condition 1: The decision space for going from a state
(say State∗) to another state (called state transition)
depends on State∗, not the path coming into State∗.

• Condition 2: The state transition cost depends on
State∗, not the path coming into State∗.

We will show how to satisfy these conditions in the following
discussions.

The DP procedures are developed as follows.
Define state (S, i) as the state being at node i(i ∈ S)

and visited every node in Π−1
j before passing through node

j(∀j ∈ S), and further define the objective value function
f(S, i) to be the least complexity cost “determined” (ex-
plained later on the state transition cost structure) on a path
starting at node i, legitimately visiting the rest of (n+1−|S|)
nodes, i.e., all the nodes in the set N\S, and finally finishing
at the dummy node 0.

State transition takes place from state (S, i) to (S
⋃
{j}, j)

by visiting node j (where j ∈ D(S)) at the next step, where
D(S) is the decision space, consists of the set of nodes that
can be visited after acquiring state (S, i).

Theorem 1: D(S) is a function of solely S.
Proof:First, denote Yk = {i : |Π−1

i | + 1 ≤ k ≤
n + 1− |Πi|} as the set of nodes that may stay in
position k (k ∈ {1, 2, . . . , n + 1}) in any feasible
tour. Next, note that, if |S| = k, then j ∈ Yk, i.e., by
definition, D(S) = Yk\S. Since Yk is determined
by the precedence graph G = (N ,A), thus D(S)
relies only on S.

Put alternatively, D(S) is determined by the set of the
nodes we have visited not the node where we are at, nor
the path coming into the node. Thus, Theorem 1 shows that
Condition 1 has been satisfied.

As we have mentioned earlier, the state transition cost
structure of our ASP problem is quite different from that of
the classical TSP-PC, which causes the difficulty of solving
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the problem. However the equivalent transformation in the
previous section gains us the insight to transfer the state
transition cost to that of the classical TSP-PC as being the
arc length from node i to node j.

Theorem 2: The complexity incurred by choosing to visit
node j at state (S, i) is a function of the state and node j.

Proof:First of all, we notice that by choosing node j as
the next node to be visited, we “determine” the
complexity flowing from node j to all the other
nodes in the set N\(S

⋃
{j}) but not in the oppo-

site direction. The “determined” complexity flows
are the finite Cjk’s with node k ∈ N\(S

⋃
{j}).

To express explicitly, the transition cost from state
(S, i) to (S

⋃
{j}, j) is

∑
∀k∈K(S,j) Cjk, where

K(S, j) = {N\(S
⋃
{j})}

⋂
{k|0 ≤ Cjk < ∞}.

Therefore, the state transition cost depends only on
state (S, i) and node j.

Put alternatively, the active flows are “determined” by
selecting finite values in the columns corresponding to the
un-visited nodes, and in row j of the reduced complexity
array in Fig.7. Therefore, by Theorems 1 and 2, Condition
2 has been satisfied.

Corollary 3: The state transition cost from state (S, i) to
(S

⋃
{j}, j) is zero, if j is the only candidate decision in

D(S), i.e., D(S) = {j}.
Proof:Since D(S) = {j}, ∀k ∈ K(S, j) we have

strictly j ≺ k, which is imposed by precedence
constraints. Because of the simplification shown in
Fig.7 (where Cij = 0 if i ≺ j), we have Cjk = 0.
Therefore, by Theorem 2, the state transition cost∑

∀k∈K(S,j) Cjk is zero.
The result of Corollary 3 helps to simplify the calculation

of state transition costs in DP recursions.
Now the functional equation for the exact solution follows.

Moreover, to fully utilize the easily-found decision space
D(S), the DP recursion is intentionally developed to be
backwards.

Program 3:

f(S, i) =


minj|j∈D(S){

∑
∀k∈K(S,j) Cjk + f(S

⋃
{j}, j)},

for {0} ⊆ S ⊂ N , i ∈ S; for S = N , i ∈ S\{0}

0, for S = N , i = 0

Answer:f({0}, 0)

The TSP-PC is known to be NP-hard. Based on DP,
the computational complexity of the unconstrained TSP is
o(2n), which is exponentially growing with the number of
nodes. Here, the reason that DP is still favorable is because
the number of assembly tasks to plan is moderate, ranging
from 100 to 200 for a typical automobile plant. Thus it is
practically manageable to solve the problem in a reasonable
amount of time for the long-term strategic planning, such
as ASP. If further computational improvements are needed,
heuristics in [12] can be investigated.

V. NUMERICAL EXAMPLE

By continuing the ten-task example, we demonstrate the
numerical results solved by Program 3. We examine the
original precedence relationships (network of the solid arcs
in Fig.8), and by Theorem 1, we can find the decision space
D(S) for every feasible node set S, see Tab.I.

Then the complete Dynamic Programming Network
(DPN) is drawn in Fig.10, where nodes represent states (refer
to Tab.I for details of the states), and arcs represent possible
state transitions (refer to Tab.II for transition costs, where
node in the first column (rows) is the starting (ending) node
of the arc, and an ∞ value denotes no arc between the two
nodes).

A1

B1

B2

C1

C2

C 2
3
+
C 2
4
+

C2
5
+
C2
6

C
32+C

37

C1
4

C
41+
C
42+
C
47

({0},0)

({0,1},1)

({0,3},3)

({0,1,2},2)

({0,1,3},3)

C4

({0,3,4},4)

C3

({0,1,3},1)

D1

({0,1,2,3},3)

D2

({0,1,2,7},7)

C37

C
73+C

74+
C
75+C

76

D3

({0,1,2,3},2)

D4

({0,1,3,4},4)

C24+C25+C26

C
42 +
C
47

C42+C47

C 2
4
+
C 2
5
+
C 2
6

D5

({0,1,3,4},1)

0

E1

({0,1,2,3,4},4)

E3

({0,1,2,3,7},7)

C47

C
74 +
C
75 +
C
76

C 4
7

C74+C75+C76

E2

({0,1,2,3,7},3)

0

E4

({0,1,2,3,4},2)

E5

({0,1,3,4,5},5)

C25+C26

C
52+
C
57

C52+C57

C 2
5
+
C 2
6

F1

({0,1,2,3,4,5},5)

F3

({0,1,2,3,4,7},7)

C
57

C
75 +
C
76

C 7
5
+
C7
6

C57

F2

({0,1,2,3,4,7},4)

0

F4

({0,1,2,3,4,5},2)

C 2
6

F5

({0,1,3,4,5,6},6)

C62+C67

0

G1

({0,1,2,3,4,5,6},6)

G3

({0,1,2,3,4,5,7},7)

C67

C
76C

6
7

C76

G2

({0,1,2,3,4,5,7},5)

0

0

G4

({0,1,2,3,4,5,6},2)

0

H1

({0,1,2,3,4,5,6,7},7)

0

H2

({0,1,2,3,4,5,6,7},6)

I1

({0,1,2,3,4,5,6,7,8},8)

0

0

J1

0

K1({0,1,2,3,4,5,6,7,8,9,10},10)

0

L1({0,1,2,3,4,5,6,7,8,9,10},0)

0

0

0

0

({0,1,2,3,4,5,6,7,8,9},9)

IX,X,XIVIIIVIIVIVIVIIIIII
Stages (# of Nodes Visited)

A1

B1

B2

C1

C2

C4

C3

D1

D2

D3

D4

D5

E1

E3

E2

E4

E5

F1

F3

F2

F4

F5

G1

G3

G2

G4

H1

H2

I1

J1

K1

L1

IX,X,XIVIIIVIIVIVIVIIIIII
Stages (# of Nodes Visited)

Fig. 10. Complete DPN for the Ten-Task Example

TABLE I
LABEL, STATE, AND CORRESPONDING DECISION SPACE D(S)

FOR THE NODES OF THE DPN

Label State D(S) Label State D(S) 
A1 ({0},0) 1,3 E5 ({0,1,3,4,5},5 2,6 
B1 ({0,1},1) 2,3 F1 ({0,1,2,3,4,5},5) 6,7 
B2 ({0,3},3) 1,4 F2 ({0,1,2,3,4,7},4) 5 
C1 ({0,1,2},2) 3,7 F3 ({0,1,2,3,4,7},7) 5 
C2 ({0,1,3},3) 2,4 F4 ({0,1,2,3,4,5},2) 6,7 
C3 ({0,1,3},1) 2,4 F5 ({0,1,3,4,5,6},6) 2 
C4 ({0,3,4},4) 1 G1 ({0,1,2,3,4,5,6},6) 7 
D1 ({0,1,2,3},3) 4,7 G2 ({0,1,2,3,4,5,7},5) 6 
D2 ({0,1,2,7},7) 3 G3 ({0,1,2,3,4,5,7},7) 6 
D3 ({0,1,2,3},2) 4,7 G4 ({0,1,2,3,4,5,6},2) 7 
D4 ({0,1,3,4},4) 2,5 H1 ({0,1,2,3,4,5,6,7},7) 8 
D5 ({0,1,3,4},1) 2,5 H2 ({0,1,2,3,4,5,6,7},6) 8 
E1 ({0,1,2,3,4},4) 5,7 I1 ({0,1,2,3,4,5,6,7,8},8) 9 
E2 ({0,1,2,3,7},3) 4 J1 ({0,1,2,3,4,5,6,7,8,9},9) 10 
E3 ({0,1,2,3,7},7) 4 K1 ({0,1,2,3,4,5,6,7,8,9,10},10) 0 
E4 ({0,1,2,3,4},2) 5,7 L1 ({0,1,2,3,4,5,6,7,8,9,10},0) 0 

 
For illustration, numerical values are selected

for the cost array by assigning ones to the cells
{(2, 3), (2, 4), (3, 1), (3, 7), (4, 1), (5, 2), (5, 7), (6, 2), (6, 7),
(7, 4)}, and zeros to the remaining cells in Fig.7. By
calculating the state transition cost according to Tab.II,
we obtain the numerical values for every arc of the DPN.
Then, we find one shortest path, which has been denoted

TuB2.4

257



TABLE II
STATE TRANSITION COSTS ON THE ARCS OF THE DPN 

 
 B1 B2     

A1 C13+C14 C31+C32+C37     
 C1 C2 C3 C4   

B1 C23+C24+C25+C26 C32+C37 ∞ ∞   
B2 ∞ ∞ C14 C41+C42+C47   

 D1 D2 D3 D4 D5  
C1 C37 C73+C74+C75+C76 ∞ ∞ ∞  
C2 ∞ ∞ C24+C25+C26 C42+C47 ∞  
C3 ∞ ∞ C24+C25+C26 C42+C47 ∞  
C4 ∞ ∞ ∞ ∞ 0  

 E1 E2 E3 E4 E5  
D1 C47 ∞ C74+C75+C76 ∞ ∞  
D2 0 ∞ ∞ ∞ ∞  
D3 C47 ∞ C74+C75+C76 ∞ ∞  
D4 ∞ ∞ ∞ C25+C26 C52+C57  
D5 ∞ ∞ ∞ C25+C26 C52+C57  

 F1 F2 F3 F4 F5  
E1 C57 ∞ C75+C76 ∞ ∞  
E2 ∞ 0 ∞ ∞ ∞  
E3 ∞ 0 ∞ ∞ ∞  
E4 C57 ∞ C75+C76 ∞ ∞  
E5 ∞ ∞ ∞ C26 C62+C67  

 G1 G2 G3 G4   
F1 C67 ∞ C76 ∞   
F2 ∞ 0 ∞ ∞   
F3 ∞ 0 ∞ ∞   
F4 C67 ∞ C76 ∞   
F5 ∞ ∞ ∞ 0   

 H1 H2 I1 J1 K1 L1 
G1 0 ∞ ∞ ∞ ∞ ∞ 
G2 ∞ 0 ∞ ∞ ∞ ∞ 
G3 ∞ 0 ∞ ∞ ∞ ∞ 
G4 0 ∞ ∞ ∞ ∞ ∞ 
H1 ∞ ∞ 0 ∞ ∞ ∞ 
H2 ∞ ∞ 0 ∞ ∞ ∞ 
I1 ∞ ∞ ∞ 0 ∞ ∞ 
J1 ∞ ∞ ∞ ∞ 0 ∞ 
K1 ∞ ∞ ∞ ∞ ∞ 0 
 

with thick arcs, see Fig.10. The corresponding optimal
solution is 1-3-4-2-7-5-6-8-9-10, and the objective value
is one (bit of complexity). As a comparison and thanks
to the special selection of numerical values, the infeasible
solution (1-4-7-3-2-5-6-8-9-1) illustrated in Fig.9(b) gives
the objective value a zero. However the solution violates
the precedence constraints as we have pointed out.

VI. CONCLUSION

In this paper, we have demonstrated the opportunity of
minimizing complexity for manufacturing systems by as-
sembly sequence planning. The complexity is defined as
operator choice complexity, which indirectly measures the
human performance in making choices, such as selecting
parts, tools, fixtures, and assembly procedures in a multi-
product, multi-stage, manual assembly environment.

Methodologies developed in this paper extend the previous
work on modeling complexity and provide solution strategies
for assembly sequence planning to minimize complexity.

The solution strategies overcome the difficulty of handling
the directions of complexity flows in optimization and ef-
fectively simplify the original problem through equivalent
transformation into a network flow model. This makes the
problem comparable to the traveling salesman problem with
precedence constraints. By a careful construction of the state
transition cost structure, we obtain the exact optimal solution
through recursions based on dynamic programming. Such
solution strategy is also generally applicable to problems
in multi-stage systems where complex interactions between
stages are considered.

However, due to the restrictive assumption on position
independence for complexity, the application of the method-
ology is still limited. Moreover, the exponentially growing
computational complexity is also not satisfactory for large
problems with the number of assembly tasks far beyond 200.
Hence, the future work should address the above limitations
by developing approximations and heuristics without signif-
icantly sacrificing the accuracy of the solutions.
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