
938 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 4, JULY/AUGUST 1990

VI. CONCLUSION
The rate at which learning algorithms converge has been a

limiting factor in their implementation. Discretizing provides a
general method of improving the performance of VSSA. Dis-
cretizing VSSA restricts the probability of choosing an action to
a finite number of values. Discretizing reduces computation
time by replacing floating-point multiplication with integer addi-
tion. It also reduces the number of iterations needed for an
algorithm to converge. Finally, discretizing eliminates the need
for precise random number generators.

The CPA is among the quickest stochastic learning automata
known to date. As such, it represents a natural candidate for
discretization. Fortunately, E-optimality is preserved when the
CPA is discretized. As well, in some difficult two-action environ-
ments the DPA requires only about 50% of the number of
iterations required for its continuous counter part. It required
only 69% of the iterations required by the CPA when learning
in a ten-action environment. Indeed, the DPA is probably the
fastest nonestimator or pursuit automaton reported in the litera-
ture to date.

We are currently working on discretizing the more general
family of estimator algorithms introduced by Thathachar and
Sastry [27]. We believe that the conclusions made in the compar-
ison between the continuous and the discretized versions of the
PA generalize to the entire family of estimator algorithms.

ACKNOWLEDGMENT
We are grateful to Mr. Valiveti, Prof. Thathachar and an

anonymous referee who provided us with many helpful com-
ments. We are also grateful to Prof. Dixon from Carleton
University who brought to our attention an error in the original
proof of convergence.

REFERENCES
S. Baba, S. T. Soeda, and Y. Sawaragi, “An application of stochastic
automata to the investment game,” Int. J . Sysf. Sci., vol. 11, no. 12, pp.
1447-1457, Dec. 1980.
Y. A. Flerov, “Some classes of multi-input automata,” J. Cybern., vol. 2,
pp. 112-122, 1972.
D. L. Isaacson and R. W. Madson, Markm Chains: Theory and Applica-
tions. New York Wiley, 1976.
S . Karlin and H. M. Taylor, A First Course on Stochastic Processes,
second ed.
S . Lakshmivarahan, Learning Algorithms Theory and Applications. New
York Springer-Verlag, 1981.
-, “E-optimal learning algorithms-Non-absorbing barrier type,”
Tech. Rep. EECS 7901, Feb. 1979, School of Elec. Eng. and Comput-
ing Sci., Univ. Oklahoma, Norman, OK.
-, “Two person decentralized team with incomplete information,”
Appl. Math. and Computation, vol. 8, pp. 51-78, 1981.
S. Lakshmivarahan and M. A. L. Thathachar, “Absolutely expedient
algorithms for stochastic automata,” IEEE Trans. Syst. Man Cybem.,

M. R. Meybodi, “Learning automata and its application to priority
assignment in a queueing system with unknown characteristics,” Ph.D.
Thesis, School of Elec. Eng. and Computing Sci., Univ. Oklahoma,
Norman, OK.
K. S. Narendra and M. A. L. Thathachar, Learning Automata. Engle-
wood cliffs, NJ: Prentice-Hall, 1989.
-, “Learning automata-A Survey,” IEEE Trans. Syst. Man Cy-
bem., vol. SMC-4, pp. 323-334, 1974.
-, “On the behavior of a learning automaton in a changing
environment with routing applications,” IEEE Trans. Syst. Man Cybem.,
vol. SMC-10, pp. 262-269, 1980.
K. S. Narendra. E. Wright. and L. G. Mason. “Aodications of learning

New York: Academic Press, 1974.,

vol. SMC-3, pp. 281-286, 1973.

I L .

automata to telephone traffic routing,” IEEE Trans. Syst. Man Cybem.,
vol. SMC-7, pp. 785-792, 1977.
K. S . Narendra and S. Lakshmivarahan, “Learning automata: A cri-
tique,”J. Cybem. Inform. Sci., vol. 1, pp. 53-66, 1987.
B. J. Oommen and E. R. Hansen, “The asymptotic optimality of
discretized linear reward-inaction learning automata,” IEEE Trans.
Syst. Man Cybern., pp. 542-545, May/June 1984.

B. J. Oommen and J. P. R. Christensen, “Epsilon-optimal discretized
linear reward-penalty learning automata,” IEEE Trans. Syst. Man Cy-
bern., vol. SMC-18, pp. 451-458, May/June 1988.
B. J. Oommen and M. A. L. Thathachar, “Multiaction learning au-
tomata possessing ergodicity of the mean,” Inform. Sci., vol. 35, no. 3,
pp. 183-198, June 1985.
B. J. Oommen, “Ergodic learning automata capable of incorporating
a priori information,” IEEE Trans. Syst. Man Cybem., vol. SMC-17, pp.
717-723, July/Aug. 1987.
-, “Absorbing and ergodic discretized two-action learning au-
tomata,” IEEE Trans. Syst. Man Cybem., vol. SMC-16, pp. 282-296,
1986.
-, “A learning automaton solution to the stochastic minimum
spanning circle problem,” IEEE Trans. Syst. Man Cybem., pp. 598-603,
July/Aug. 1986.
B. J. Oommen and D. C. Y. Ma, “Deterministic learning automata
solutions to the equi-partitioning problem,” IEEE Trans. Comput., vol.
37, pp. 2-14, Jan. 1988.
-, “Fast object partitioning using stochastic learning automata,” in
Proc. 1987 Int. Conf. Research Development in Inform. Retrieval, New
Orleans, LA, June 1987.
R. Ramesh, “Learning automata in pattern classification,” M E . thesis,
Indian Institute of Science, Bangalore, India, 1983.
P. S. Sastry, “Systems of learning automata: Estimator algorithms
applications,” Ph.D. thesis, Dept. Elec. Eng., Indian Institute of Sci-
ence, Bangalore, India, June 1985.
M. A. L. Thathachar and B. J. Oommen, “Discretized reward-inaction
learning automata,” J . Cybern. Inform. Sci., pp. 24-29, Spring 1979.
M. A. L. Thathachar and P. S . Sastry, “A new approach to designing
reinforcement schemes for learning automata,” in froc. IEEE Int.
Conf. Cybem. Syst., Bombay, India, Jan. 1984.
-, “A class of rapidly converging algorithms for learning automata,”
IEEE Trans. Syst. Man Cybem., vol. SMC-15, pp. 168-175, Jan. 1985.
-, “Estimator algorithms for learning automata,” Proc. Platinum
Jubilee Conf. on Syst. Signal Processing, Dept. Elec. Eng., Indian Insti-
tute of Science, Bangalore, India, Dec. 1986.
M. L. Tsetlin, “On the behavior of finite automata in random media,”
Automat. Telemekh. (USSR), vol. 22, pp. 1345-1354, Oct. 1961.
-, Automaton Theory and the Modelling of Biological Systems.
New York Academic, 1973.

[31]

[32]

Y. Z. Tsypkin and A. S. Poznyak, “Finite learning automata,” Eng.
Cybern., vol. 10, pp. 478-490, 1972.
V. I. Varshavskii and I. P. Vorontsova, “On the behavior of stochastic
automata with variable structure,” Automata Telemekh. (USSR), vol.
24, pp. 327-333, 1963.
S. Mukhopadhyay and M. A. L. Thathachar, “Associative learning of
boolean functions,” IEEE Trans. Syst. Man Cybem., vol. SMC-19, pp.
1008-1015, 1989.
J . K. Lanctdt, “Discrete estimator algorithms: A mathematical model
of machine learning,” M.Sc. thesis, Carleton Univ., Ottawa, ON,
Canada, Fall 1989.

[33]

[34]

Task-Level Tour Plan Generation for Mobile Robots
J. BORENSTEIN, MEMBER, IEEE, AND Y . KOREN, SENIOR

MEMBER, IEEE

Abstract -A tour plan generator (TPG) specifically adapted for mobile
robots is described. The TPG computes the itinerary of a tour passing
through a number of locations. While solutions to similar problems exist
(e.g., the well-known traveling salesman problem), special constraints
apply to mobile robot applications. One typical constraint is that a
single-armed mobile robot is usually unable to carry more than one
object at a time in its gripper. This constraint requires the TPG to
generate a tour in which each pick-up location is visited immediately
prior to the corresponding drop-off location. A model is introduced that
allows us to reduce this problem to a special case of the traveling

Manuscript received June 13, 1989; revised March 6, 1990. This work was
supported in part by the Department of Energy, under Grant DE-FG02-
86NE37967.

The authors are with the Department of Mechanical Engineering and
Applied Mechanics, University of Michigan, Ann Arbor, MI 48109.

IEEE Log Number 9035711.

001 8-9472/90/0700-0938$Ol .OO 0 1990 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 4, JULY/AUGUST 1990 939

salesman problem with asymmetric cost matrix and non-Euclidean
distances. Another constraint in many mobile robots is the need to
periodically visit a home location (e.g., for the purpose of battery
charging or position updating). The TPG introduced in this paper
automatically creates multiple subtours such that a predefined maximal
length for each subtour is not exceeded. The algorithm obtains near-op-
timal solutions with short computation times by combining different
heuristic tour-construction rules into a heuristic team approach. With
this method, new heuristic rules can be added in order to improve the
accuracy of the algorithm for particular applications. An index of
performance has been defined to evaluate the performance of individual
members of the heuristic team.

I. INTRODUCTION
A task-oriented navigation system for mobile robots is cur-

rently under development in the Robotic Systems Division at
the University of Michigan. This hierarchically organized system
[2] comprises four functional levels of performance, described
below.

A. The Hierarchical Navigation System
The task planner (TP) represents the system’s highest level

(Level IV). Interfacing with the human operator, the TP re-
ceives a list of tasks that need to be performed by the robot. The
TP then extracts from this list all locations pertinent to robot
travel and sends them to the next lowest level.

Level I11 consists of the tour plan generator (TPG), which
plans a sequence of trips among all specified locations. This is
not a trivial task, since some locations must be visited in a
certain order and some tours may be too long and have to be
broken up into smaller ones.

The global path planner (GPP) resides in Level I1 of the
system. The GPP contains a world model that includes informa-
tion about stationary obstacles (e.g., walls), off-limit zones (e.g.,
stairs), and recently detected unexpected obstacles. Based on
this information, the GPP plans an optimal path between the
robot’s current location and its destination [l]. The path pro-
duced by the GPP is expressed as a linked list of via-points,
typically spaced about 1-10 m apart.

At the lowest level (Level I), the local path planner (LPP)
drives the mobile robot from one via-point to the next. The main
task of the LPP, however, is obstacle avoidance [2], [3], [4]. In
our mobile robot system, the LPP uses ultrasonic sensors to
detect and avoid obstacles without interrupting the robot’s
progress toward the designated target.

This paper describes a TPG specifically designed for mobile
robot applications. The heart of the TPG is an algorithm that
computes an optimal (or near-optimal) tour comprising a start
location and any number of intermediate destinations. It is
assumed that a tour is closed-that is, the robot returns to its
original start location.

B. Tour Plan Generation for Mobile Robots - Required Features
The tour planning problem falls into the class of vehicle

scheduling problems, which encompass a variety of transport
applications. However, mobile robots represent a specific class
of transportation devices and therefore require special consider-
ations, outlined as follows.

I) Distribution: This is the most basic feature of the TPG. A
distribution task requires the mobile robot to pick up a supply of
items at a central depot and then distribute these items to a
number of drop-off points. For this purpose, the TPG must
calculate an optimal tour (usually in terms of distance), starting
at the depot and passing each specified drop-off point exactly
once, before returning to the depot. For distribution tasks, the
order in which drop-off points are visited is unimportant and the
robot’s transport capacity is considered unlimited-that is, it is
assumed that the carrying capacity will accommodate all items

scheduled for distribution. This basic case is also known as the
traveling salesman problem (TSP).

2) Tour Length Constraint: A mobile robot’s maximal tour
length between visits to its home depot may be limited. T ~ i c a l
reasons for this limitation are the need to recharge batteries or
to recalibrate an onboard positioning system (e.g., a gyro). To
accommodate this constraint, the TPG must automatically insert
home depot visits into the planned tour, effectively dividing the
planned tour into one or more subtours. The overall tour length,
comprising all such created subtours, is again optimal. While not
explicitly addressed in this paper, this feature can easily be
modified to deal with load-capacity or travel time limitations.

3) Ordered Pairs: This feature addresses situations in which
only one item can be transported at a time, which is characteris-
tic for mobile robots equipped with an arm (since usually only
one item can be held in the robot’s gripper). Consequently, goal
locations should not be treated equally but as ordered pairs,
where each source location (where an object is acquired) must
be followed immediately by its respective goal location (where
the object is released) before the robot can perform the next
task.

4) Mixed Tasks: In the TPG, distribution and ordered pair
tasks must be handled concurrently. This enables the operator
to issue a list of mixed commands, such as (command keywords
are printed in upper-case):

“BRING item-1 FROM place-1 TO place-2 AND
DISTRIBUTE item-2 TO place-3 AND DISTRIBUTE
item-3 TO place-4 AND [more activities] AND [more
activities] PLEASE.”

The TPG then computes a sequence of trips that connects all
locations such that the overall traveling cost is optimal.

11. THE TRAVELING SALESMAN PROBLEM
The features listed above are related to a well-known problem

in the fields of operations research and artificial intelligence,
the TSP. The task is to find an optimal tour through n cities,
starting at city 1, then visiting the n - 1 remaining cities once
and only once before returning to the origin. An optimal solu-
tion is usually defined in terms of minimum distance or cost.

The problem is of great interest because of its many real-life
applications such as fuel oil delivery, newspaper distribution, or
the delivery of goods from a central depot to a number of
outlets. Various solution to the problem are based on branch-
and-bound algorithms that can yield exact (optimal) solutions.
Unfortunately, the combinatorial nature of the problem tends to
increase computer storage and time requirements dramatically
with increasing n . As a matter of fact, the problem belongs to
the class of NP-hard problems [12], which require an amount of
time exponential in n for an exact solution.

As a result, much effort has been put into the development of
heuristic algorithms, which, by their very nature, are not neces-
sarily optimal, but require only a polynomial amount of compu-
tation time. The trade-off is justified since a “good” solution is
acceptable for most practical applications. In fact, Golden and
Assad [8] point out that most heuristic solutions are asymptoti-
cally optimal; i.e., their relative error goes to zero with large n.
For this reason, we will use the term “optimal” in the sense of
“near-optimal”-i.e., the best solution the heuristic algorithm
can produce. By contrast, when referring to the mathematically
exact optimal solution, we will use the term “absolute optimal.”

The heuristic algorithms for the TSP fall into three classes:

I) Tour Construction Procedures: The heuristics are applied
during the construction of the tour. Various heuristic rules for
the selection of the next city to be included in the growing
subtour have been suggested in the literature. Examples for this

940 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 4, JULY/AUCUST 1990

method are: nearest neighbor, discussed and analyzed in [15];
Clarke and Wright savings, discussed and improved in [7]; near-
est, arbitrary, cheapest, or farthest insertion, analyzed and tested
in [151; and convex hull, discussed in [9].

2) Tour Improuement Procedures: A randomly constructed ini-
tial tour is improved by exchanging one subset of links in the
tour with another subset, until no further improvement is
achieved. Examples of this method are the 3-opt method, intro-
duced in [13], and the k-opt method, introduced in [14].

3) Composite Procedures: This is a simple yet effective refine-
ment. First, a tour construction procedure is applied to produce
a “good” initial tour. Second, one or even two tour improve-
ment procedures are applied. Several variations of this method
have been tested and compared by Golden [9].

A thorough comparison of all the above methods, with many
experimental results (concerning accuracy and timing), is given
in [91. A theoretical analysis of some of the tour construction
procedures appears in [151.

A. Limitations and Assumptions
The basic form of the TSP includes the following two assump-

tions:

1) Symmetrical Distance Matrix: This assumption applies to
the common case where the distance between location i and
location j is the same in both directions. An example of a case
that does not produce symmetrical distances is a distance matrix
of intra-urban connections with one-way streets. Here the actual
distance traveled between two locations is not necessarily the
same in both directions.

2) Triangle Inequality: The triangle inequality is fundamental
in euclidean geometry and states that the sum of the lengths of
any two sides in a triangle is greater than the length of the third
side. One example of a case in which the triangle inequality
does not necessarily hold are interurban roads in hilly areas.

Not all of the heuristic algorithms above are capable of
handling exceptions to the basic TSP. Unfortunately, experimen-
tal results [9] relate only to the basic form of the TSP, and so do
most other papers on the subject.

B. Vehicle Routing
A related class of problems is known as the vehicle routing

problem (VRP). In the VRP, a set of routes must be designed,
again, at minimal total cost. However, now each route leaves
from and eventually returns to a depot or home base, while
satisfying capacity constraints and meeting customer require-
ments. The problem can be seen as an (at times much more
demanding) extension of the standard TSP, with some or all of
the following requirements and restrictions added [8]:

An optimal tour between one central depot and many
customers must be found for many vehicles traveling con-
currently;
Vehicles have maximum capacities;
Vehicles have maximum travel time or time window con-

Multiple depots, multiple capacities, multiple demands, etc.,

Recent research introduces branch-and-bound based methods
that solve VRP’s with different constraints. For example, Gavish
and Srikanth [6] solve large problems with up to 500 locations
and multiple subtours, and Kolen et al. [l l] solve problems with
additional time window constraints, but with much fewer loca-
tions (n = 15). This and other evidence in the literature indicate
that computation time rises dramatically as more constraints are
addressed.

straints;

may exist.

...........

Fig. 1 . The triangle inequality does not hold when using the ordered pair
model.

For this reason, many researchers [SI, [16] base their approach
on reducing the complexity of the VRP (by means of some
heuristics) to the basic TSP, which may then be solved by any of
the heuristic methods discussed previously. Clearly, this ap-
proach yields only an approximate solution.

111. A TOUR PLAN GENERATOR FOR MOBILE ROBOTS
We have developed two complementary models for mobile

robot applications that allow us to implement our TPG as a
special case of the TSP.

Model I: The foremost problem in tour planning for mobile
robot applications stems from the fact that single-arm mobile
robots can usually carry only one item at a time. If the robot is
required to transport several objects from source locations to
goal locations (one at a time) then a source must always be
visited immediately prior to visiting a goal-a constraint conven-
tional TSP algorithms cannot handle. Nevertheless, this problem
is TSP-related and is known in the literature as the stacker
crane problem [12].

As a solution to this problem, we treat each ordered pair
(source and goal) as one location in the TSP. This concept can
be visualized by picturing the vehicle entering a location i at
source(i) and emerging from that location at goal(?) (see Fig. 1).
The n X n cost matrix C comprises of elements cl. , , , which are
the distances between goal(?) and source(j). As seen in Fig. 1,
the distance between goal(i‘) and source($ differs from the
distance between source(i) and goal(j’), and therefore C is
asymmetric. Please note that for this model, the internal dis-
tance between source(i) and goal(?) may be considered as zero.
However, since internal distances may be needed to compute
the overall length of a tour (see Model 11, below), they are
stored as the diagonal elements c ~ , ~ , in C .

It should also be noted that tasks involving only one physical
location at a time (e.g., distribution tasks) can easily be adapted
to the above model by simply assigning the same coordinates to
artificially defined sources and goals. This is why ordered pair
and distribution task commands can be issued in the same
command sequence (feature (d) in Sec. 1-2.).

From Fig. 1 it is also evident that the triangle inequality does
not hold in this case: the triangle tour 1’ to 2; 2’ to 3; 3’ to 1,
constituting a complete tour according to our model, does not
yield c(1’ - 2) + c(2’ - 3) > c(3’ - 1). In practical mobile robot ap-
plications the triangle inequality does not hold for yet another
reason: a distance in the cost matrix is actually the length of a
trip, which is computed as the shortest possible connection
between two locations, while avoiding known obstacles. There-
fore, a trip may be considerably longer than the straight
(euclidean) distances between two locations.

As is seen from the above discussion, the requirements in
mobile robot applications exceed the two assumptions of the
basic TSP. With regard to the three types of heuristic solutions
mentioned in Section 11, tour improvement procedures cannot
be used for this problem because they require symmetric dis-
tance matrices [9]. Similarly, composite procedures cannot be

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 4, IULY/AUGUST 1990 941

used since they make use of tour improvement procedures.
Therefore, the most suitable heuristic approach is based on tour
construction procedures.

Model ZZ: In order to insert a visit to a home depot after a
preprogrammed tour length L,, has been traveled, the tour
must be broken up into subtours, each of which starts and
terminates at the home location. The length of the subtour must
not exceed L,,,. The TPG described below includes a mecha-
nism for breaking up the complete tour into subtours. With this
mechanism it is easy to adapt the algarithm to other physical
constraints of similar type (i.e., where a physical resource is in
limited supply and is exhausted during travel). Examples for
such constraints include charge in a battery-powered vehicle;
time in school bus scheduling or newspaper dispatching; capac-
ity in a vehicle with capacity limitations; or position accuracy of
a position sensor (e.g., a gyro), which drifts with increasing tour
length or time. TSP’s with more than one subtour are also
known as multiple traveling salesmen problems (MTSP). Solu-
tions to MTSP’s are given in [6] and [lo]. However, these
solutions assume that the number of subtours to be created is
known in advance.

IV. THE TPG ALGORITHM

In mobile robots, onboard computation power is usually lim-
ited, both in memory size and in computation speed. For this
reason, a TPG algorithm that is small in size and fast is pre-
ferred over larger and slower programs with higher accuracy. A
simple heuristic algorithm was therefore considered the most
suitable for onboard implementation. Out of the three classes of
heuristic TSP algorithms (see Section II), we have chosen to
work with tour construction procedures, since they offer a
straightforward way to accommodate both models (I and 11,
above).

A tour construction procedure (also called insertion proce-
dure) usually starts with the smallest possible subtour compris-
ing two locations. Then, according to some heuristic rule, the
procedure inserts new locations into this subtour until all loca-
tions are included and the tour is complete. After each new
location has been inserted, the tour length constraint can be
tested. This is done by comparing the accumulated tour length
(of the current subtour) to L,=. If L,,, is exceeded, the last
inserted location is removed and the remaining subtour (now
complying with L,,,) is saved. Subsequently, a new subtour is
constructed until all locations have been included. Note that a
subtour is near-optimal at any stage of this process, since the
newly inserted location was selected by the heuristic selection
rule of the algorithm.

The following is the generic form for the closest (or farthest,
or arbitrary) insertion algorithm for the standard TSP:

Choose a starting location m.
Choose a location n such that c(m,n) is minimal (or
maximal) and form subtour m -+ n -+ m.
Find location k , not yet in the subtour, that is closest (or
farthest, or arbitrary) to any location in the subtour.
Find trip (i , j) in the subtour that minimizes c (i , k) +
c (k , j) - c(i, j) . Insert k between i and j.
Repeat steps (3) and (4) until all locations are included in
the tour.

Calculation times for such algorithms are O b 2) [9]. Typically,
one would run the same algorithm n times, choosing each one
of the n locations once as the starting location, comparing costs
of each run and selecting the tour with the lowest cost as the
result. This changes the order of the resulting algorithm to
O(n3) , but considerably improves the quality of the solution. In
our application, however, subtours are likely to be created
because of the tour length constraint. Since subtours must start
and end at the same location, the algorithm cannot be run with

TABLE I
SAMPLE-RUN COORDINATES

~~

RUN#32
COORDINATES

X y’ X Y
~

718
507

33
201
650
595
186
532

279
312
171

11
258
343
143
170

718
705
620
561
391
297
373
479

279
171
233
164
279
330
327
339

TABLE I1
ASYMMETRIC COST MATRIX FOR THE SAMPLE RUN

RUN#32
ASYMMETRIC COST-MATRIX C

1 2 3 4 5 6 7 8

1’ 0 108 108 194 327 424 348 246
2’ 213 243 137 157 120 210 134 38
3’ 693 672 590 528 373 308 374 476
4‘ 582 528 474 391 328 333 359 429
5’ 71 102 39 129 259 360 285 189
6‘ 138 204 112 182 213 298 222 116
7’ 549 519 443 375 246 217 262 352
8‘ 215 173 108 29 178 284 223 177

different starting locations, rendering this means of improve-
ment useless.

Nevertheless, we were able to improve results by running
several similar algorithms for the same problem, and selecting
the best run as the result. We run the generic insertion algo-
rithm (comprising steps (1)-(5) above) with variations to step 3
(the selection rule). The following six selection rules were em-
ployed:

SELECTI: Find location k , not in the subtour, farthest from
the starting location.

SELECT2: Find location k , not in the subtour, closest to the
last chosen location.

SELECT3: Find location k , not in the subtour, close to the
last chosen location, but far from the first loca-
tion, maximizing c(1, k) - c(k - l, k) .

SELECT4: CLOSEST INSERTION: find location k , not in
the subtour, closest to any location in the subtour.

SELECTS: FARTHEST INSERTION: find location k , not in
the subtour, farthest from any location in the
subtour.

SELECT6: CHEAPEST INSERTION: for (z , j) in the sub-
tour find location k , not in the subtour, minimiz-
ing c(i’, k) + c (k ’ , j) - di‘, j) .

Please note that selection rules 1, 2, and 3 are our own
heuristics, while rules 4, 5, and 6 have been suggested in the
literature. Also, rules 1-5 are all of O(n2), while rule 6 is of
O(n2 log n) [121.

V. EXPERIMENTAL RESULTS
In order to obtain relevant data for empirical evaluation, 100

random problems, each comprising n = 15 locations (one start-
ing location and seven start/goal pairs), were created. Table I
gives the coordinates for one such problem, and Table I1 shows
the associated asymmetric cost matrix C. The diagonal elements
of C hold the internal distance between the start and goal
location of an ordered pair. This information is not needed for

942 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 4, JWLY/AUGUST 1990

Fig. 2. Sample problem with one start location and seven ordered pairs.

TABLE 111
ABSOLUTE OFTIMAL TOUR WITH ONE AND TWO subtours

RUN#32

With one subtour:
Absolute optimal tour: 1 -+ 2 + 8 + 4 -+ 7 + 5 + 3 -+ 6 -+ 1
L,,, = 2613 (set to 0.75*Cop, to force 2nd subtour)
With two subtours:
Absolute optimal tour: 1 + 3 + 6 -+ 1 + 2 + 8 -+ 4 + 7 + 5 -+ 1

Cop, = 3485

C.!... = 3625

TABLE IV
RESULTS OF INDIVIDUAL SELECTION RULES

RUN#32 (L,,, = 2613, CAp, = 3625)

Selection Rule

SELECT1
SELECT2
SELECT3
SELECT4
SELECT5
SELECT6
TPG’s best

Tour

1 + 3 - + 7 + 6 + 5 + 1 + 2 - + 4 - + 8 + 1
1 + 8 + 4 - + 7 + 6 - + 5 + 1 + 2 - + 3 + 1
1 + 2 + 8 + 4 + 7 + 5 + 1 + 3 - + 6 + 1
1 + 2 - + 8 - + 3 + 7 - + 5 + 1 + 4 - + 6 + 1
1 + 2 + 8 - + 3 + 7 + 6 + 1 + 4 + 5 + 1
1 + 7 + 6 - + 8 + 4 + 5 + 1 + 2 + 3 + 1
1 + 2 + 8 + 4 + 7 + 5 + 1 + 3 - + 6 + 1

cost

4112
4293
3625
3830
3796
4267
3625

13.43%
18.42%
0.00%
5.65%
4.71%

17.71%
0.00%

choosing an optimal tour (and could be set equal O), since this
distance must be traveled anyway for any possible tour. How-
ever, this internal distance must be considered on behalf of the
tour length constraint.

Fig. 2 depicts the same example graphically. The starting
location is labeled “l”, start/goal pairs are labeled “2” through
“8”, and goal locations are distinguished by primes. Close in-
spection of Fig. 2 shows the difficulty in finding an optimal tour
manually, even for this relatively small problem.

For each one of the 100 problems, the absolute optimal
solution was calculated. This was possible because the problem
size (n = 15) is very small. The cost of the absolute optimal tour
(in terms of tour length) is named Copt.

In order to enforce the creation of a tour comprising at least
two subtours, the constraint for the maximal tour length L,,,
was then set to 75% (arbitrarily chosen value) of the absolute
optimal cost Cop,. (Clearly, if the admissible maximal length
L,, is less than the length of the known absolute optimal tour,

then the heuristic algorithm will have to build two or more
subtours.) Recalculation of the new optimal cost, now under
consideration of the maximal cost constraint L,,,, yielded a
new optimal tour, shown in Table 111. The value of CLPt in
Table 111 represents the total cost of the absolute optimal
solution of the 2-subtour problem with the tour length con-
straint.

Subsequently, each one of the six heuristic algorithms was run
for each of the 100 random problems. A typical result (for the
above example) is shown in Table IV, where the relative error
E,, (as compared to C&,) of each selection rule is shown. Since
the TPG always runs all six selection rules for each problem, the
TPG can choose the best result out of the six as the representa-
tive result. In the example shown in Table IV, selection rule #3
happened to find the exact optimal tour; therefore, the repre-
sentative result shows Ere, = 0. Obviously, this is coincidental,
and Ere, > 0 for most representative results. A better indication
for the accuracy of the TPG would be an average of the relative

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 4, JULY/AUGUST 1990 943

TABLE V
AVERAGE ERROR Eayrg PRODUCED BY

EACH SELECTION RULE
WHEN RUN &ONE

Average error
Active rule E,,,, (100 runs)

~~

only SELECT1 7.22%
only SELECT2 7.12%

only SELECT4 7.63%

only SELECT6 10.03%

only SELECT3 8.00%

only SELECT5 7.45%

TABLE VI

(OR ALL EXCEPT ONE$ SELECTION RULES

Average error E,, Contribution to joint

AVERAGE ERROR E,,, PRODUCED BY ALL

Active selection rules (100 runs) Derformance

All Selection rules
all except SELECT1
all except SELECT2
all except SELECT3
all except SELECT4
all except SELECT5
all except SELECT6

2.63%
3.06%
2.78%
3.12%
2.95%
2.84%
2.79%

0.43 = 14.1%
0.15 = 5.4%
0.49 = 15.7%
0.32 = 10.8%
0.21 = 7.4%
0.16 = 5.7%

errors of representative results over a large number of problems.
We will call such a value EaVrg.

VI. INDEX OF PERFORMANCE
As is evident from Table IV, the various selection rules

performed quite differently on the same problem. However,
none of the selection rules always performed well or poorly on
all 100 problems. Additional heuristic selection rules can easily
be added to the TPG. Even if the rules were bad, they might
produce the best tour every once in a while. However, computa-
tion time for the TPG grows with more selection rules to run. A
good evaluation method would allow the programmer to identify
and include only those heuristic rules that contribute signifi-
cantly to the accuracy of the algorithm. Therefore, the question
arises of how to evaluate the performance of heuristic selection
rules. One approach would be to calculate the average relative
error produced by each selection rule when run alone [9], [12]. A
result of this test is shown in Table V.

However, since the rules function as a team in the actual
algorithm, their performance should be evaluated in that con-
text. For this reason, we introduced another test. This time, the
TPG was run for all 100 problems, omitting one of the six
selection rules each time (i.e., the representative result was
chosen out of the remaining five rules). The better Eavrg result-
ing from the remaining selection rules, the lesser the contribu-
tion of the omitted selection rule. This approach can be illus-
trated by imagining a creative think-tank team working on a
problem: If only the best idea counts, it is less important how
often a team member comes up with another good idea, but
rather how often he or she produces the best one.

Table VI shows Eavrg for the TPG using all but one selection
rule. The first entry, with all selection rules active, produced an
average cost of 2.63% above the absolute optimal cost. In each
of the succeeding runs, one of the selection rules was omitted.

As can be learned from Table VI, the best contribution comes
from selection rule 3. (To our knowledge, the heuristics of this
rule have not been suggested elsewhere in the context of the
TSP. However, it must be emphasized that this experiment has
been performed with a tour length constraint.) Intuitively, selec-

tion rule 3 can be understood as an attempt to fill as many
remote locations as possible into one subtour, thereby avoiding
the high costs associated with cases where a subtour had to be
closed due to L,,, before covering all locations in a remote
area.

From Table VI it can also be learned that selection rules 2
and 6 offer only small contributions. Therefore, one might want
to consider eliminating them all together. This would be particu-
larly efficient with rule 6, since this heuristic is computationally
more expensive than the others. The remaining rules are all of
O(n2).

VII. CONCLUSION
A TPG optimized specifically for mobile robot applications

has been developed. Features of this TPG include the ability to
insert home visits into the tour automatically, as well as to deal
with ordered source/goal pairs that must be visited in proper
sequence. A model has been developed that allows us to repre-
sent the problem as a TSP with an asymmetric cost matrix and
non-Euclidean distances.

New heuristic tour construction procedures designed specifi-
cally for mobile robot requirements have been tested, and they
compare favorably with known heuristics. A heuristics team
approach was employed to further improve the TPG’s perfor-
mance. The index of performance method introduced in Section
VI provides an efficient tool to evaluate the performance of
additional selection rules. This method is particularly suited to

heuristic team approach used in this TPG.

REFERENCES
J . Borenstein and Y. Koren, “Optimal path algorithms for autonomous
vehicles,” presented at the 13th CIRP Manufacturing Systems Seminar,
Stuttgart, West Germany, June 1986.
J . Borenstein, Y. Koren, and R. Weill, “Hierarchically structured mul-
tisensor system for an intelligent mobile robot,” CIRP Ann., vol. 36/1,
pp. 331-334, 1987.
J. Borenstein and Y. Koren, “Real-time Obstacle Avoidance for Fast
Mobile Robots,” IEEE Trans. Syst., Man, Cybem., vol. 19, pp.
1179-1187, Sept./Oct. 1989.
J . Borenstein and Y. Koren, “Real-time obstacle-avoidance for mobile
robots in cluttered environments,” IEEE Int. Conf. on Robot. Automat.,
pp. 572-577, Cincinnati, OH, May 1990.
A. Federgruen and P. Zipkin, “A combined vehicle routing and inven-
tory allocation problem,” Oper. Res., vol. 32, no. 5, pp. 1019-1037,
Sept./Oct. 1984.
B. Gavish and K. Srikanth, “An optimal solution method for large-scale
multiple traveling salesmen problems,” Oper. Res., vol. 34, no. 5, pp.
698-717, Sept./Oct. 1986.
B. L. Golden, “Evaluating a sequential vehicle routing algorithm,”
AIIE Trans., vol. 9, no. 2, pp. 204-208, 1977.
B. L. Golden and A. A. Assad, “Perspectives on vehicle routing:
Exciting new developments,” Oper. Res., vol. 34, no. 5, pp. 803-810,
Sept./Oct. 1986.
B. Golden, L. Bodin, T. Doyle, and W. Stewart, “Approximate travel-
ing salesman algorithms,” Oper. Res., vol. 26, no. 3, pp. 694-711,
May/June 1980.
R. Jonker and T. Volgenant, “An improved transformation of the
symmetric multiple traveling salesman problem,” Oper. Res., vol. 36,
no. 1, pp. 163-167, Jan./Feb. 1988.
A. W. J. Kolen, A. H. G. Rinnooy Kan, and H. W. J. M. Trienekens,
“Vehicle routing with time windows,” Oper. Res., vol. 25, no. 2, pp.
266-273, Mar./Apr. 1987.
E. L. Lawler el al., The Traueling Salesman Problem. New York:
Wiley, 1985.
S. Lin, “Computer solutions of the traveling salesman problem,” Bell
System Tech. J . , vol. XLIV, no. 10, pp. 2245-2269, Dec. 1965.
S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling salesman problem,” Oper. Res., vol. 21, no. 2, pp. 498-516,
1973.
J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “Approximate algo-
rithms for the traveling salesperson problem,” in Proc. 15th Annual
IEEE Symp. Switching and Automata Theory, pp. 33-42, 1974.
M. M. Solomon, “Algorithms for the vehicle routing and scheduling
problems with time window constraints,” Oper. Res., vol. 35, no. 2, pp.
254-265, Mar./Apr. 1987.

