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VI. CONCLUSION 
The rate at which learning algorithms converge has been a 

limiting factor in their implementation. Discretizing provides a 
general method of improving the performance of VSSA. Dis- 
cretizing VSSA restricts the probability of choosing an action to 
a finite number of values. Discretizing reduces computation 
time by replacing floating-point multiplication with integer addi- 
tion. It also reduces the number of iterations needed for an 
algorithm to converge. Finally, discretizing eliminates the need 
for precise random number generators. 

The CPA is among the quickest stochastic learning automata 
known to date. As such, it represents a natural candidate for 
discretization. Fortunately, E-optimality is preserved when the 
CPA is discretized. As well, in some difficult two-action environ- 
ments the DPA requires only about 50% of the number of 
iterations required for its continuous counter part. It required 
only 69% of the iterations required by the CPA when learning 
in a ten-action environment. Indeed, the DPA is probably the 
fastest nonestimator or pursuit automaton reported in the litera- 
ture to date. 

We are currently working on discretizing the more general 
family of estimator algorithms introduced by Thathachar and 
Sastry [27]. We believe that the conclusions made in the compar- 
ison between the continuous and the discretized versions of the 
PA generalize to the entire family of estimator algorithms. 
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salesman problem with asymmetric cost matrix and non-Euclidean 
distances. Another constraint in many mobile robots is the need to 
periodically visit a home location (e.g., for the purpose of battery 
charging or position updating). The TPG introduced in this paper 
automatically creates multiple subtours such that a predefined maximal 
length for each subtour is not exceeded. The algorithm obtains near-op- 
timal solutions with short computation times by combining different 
heuristic tour-construction rules into a heuristic team approach. With 
this method, new heuristic rules can be added in order to improve the 
accuracy of the algorithm for particular applications. An index of 
performance has been defined to evaluate the performance of individual 
members of the heuristic team. 

I. INTRODUCTION 
A task-oriented navigation system for mobile robots is cur- 

rently under development in the Robotic Systems Division at 
the University of Michigan. This hierarchically organized system 
[2] comprises four functional levels of performance, described 
below. 

A. The Hierarchical Navigation System 
The task planner (TP) represents the system’s highest level 

(Level IV). Interfacing with the human operator, the TP re- 
ceives a list of tasks that need to be performed by the robot. The 
TP then extracts from this list all locations pertinent to robot 
travel and sends them to the next lowest level. 

Level I11 consists of the tour plan generator (TPG), which 
plans a sequence of trips among all specified locations. This is 
not a trivial task, since some locations must be visited in a 
certain order and some tours may be too long and have to be 
broken up into smaller ones. 

The global path planner (GPP) resides in Level I1 of the 
system. The GPP contains a world model that includes informa- 
tion about stationary obstacles (e.g., walls), off-limit zones (e.g., 
stairs), and recently detected unexpected obstacles. Based on 
this information, the GPP plans an optimal path between the 
robot’s current location and its destination [l]. The path pro- 
duced by the GPP is expressed as a linked list of via-points, 
typically spaced about 1-10 m apart. 

At the lowest level (Level I), the local path planner (LPP) 
drives the mobile robot from one via-point to the next. The main 
task of the LPP, however, is obstacle avoidance [2], [3], [4]. In 
our mobile robot system, the LPP uses ultrasonic sensors to 
detect and avoid obstacles without interrupting the robot’s 
progress toward the designated target. 

This paper describes a TPG specifically designed for mobile 
robot applications. The heart of the TPG is an algorithm that 
computes an optimal (or near-optimal) tour comprising a start 
location and any number of intermediate destinations. It is 
assumed that a tour is closed-that is, the robot returns to its 
original start location. 

B. Tour Plan Generation for Mobile Robots - Required Features 
The tour planning problem falls into the class of vehicle 

scheduling problems, which encompass a variety of transport 
applications. However, mobile robots represent a specific class 
of transportation devices and therefore require special consider- 
ations, outlined as follows. 

I )  Distribution: This is the most basic feature of the TPG. A 
distribution task requires the mobile robot to pick up a supply of 
items at a central depot and then distribute these items to a 
number of drop-off points. For this purpose, the TPG must 
calculate an optimal tour (usually in terms of distance), starting 
at the depot and passing each specified drop-off point exactly 
once, before returning to the depot. For distribution tasks, the 
order in which drop-off points are visited is unimportant and the 
robot’s transport capacity is considered unlimited-that is, it is 
assumed that the carrying capacity will accommodate all items 

scheduled for distribution. This basic case is also known as the 
traveling salesman problem (TSP). 

2) Tour Length Constraint: A mobile robot’s maximal tour 
length between visits to its home depot may be limited. T ~ i c a l  
reasons for this limitation are the need to recharge batteries or 
to recalibrate an onboard positioning system (e.g., a gyro). To 
accommodate this constraint, the TPG must automatically insert 
home depot visits into the planned tour, effectively dividing the 
planned tour into one or more subtours. The overall tour length, 
comprising all such created subtours, is again optimal. While not 
explicitly addressed in this paper, this feature can easily be 
modified to deal with load-capacity or travel time limitations. 

3) Ordered Pairs: This feature addresses situations in which 
only one item can be transported at a time, which is characteris- 
tic for mobile robots equipped with an arm (since usually only 
one item can be held in the robot’s gripper). Consequently, goal 
locations should not be treated equally but as ordered pairs, 
where each source location (where an object is acquired) must 
be followed immediately by its respective goal location (where 
the object is released) before the robot can perform the next 
task. 

4) Mixed Tasks: In the TPG, distribution and ordered pair 
tasks must be handled concurrently. This enables the operator 
to issue a list of mixed commands, such as (command keywords 
are printed in upper-case): 

“BRING item-1 FROM place-1 TO place-2 AND 
DISTRIBUTE item-2 TO place-3 AND DISTRIBUTE 
item-3 TO place-4 AND [more activities] AND [more 
activities] PLEASE.” 

The TPG then computes a sequence of trips that connects all 
locations such that the overall traveling cost is optimal. 

11. THE TRAVELING SALESMAN PROBLEM 
The features listed above are related to a well-known problem 

in the fields of operations research and artificial intelligence, 
the TSP. The task is to find an optimal tour through n cities, 
starting at city 1, then visiting the n - 1 remaining cities once 
and only once before returning to the origin. An optimal solu- 
tion is usually defined in terms of minimum distance or cost. 

The problem is of great interest because of its many real-life 
applications such as fuel oil delivery, newspaper distribution, or 
the delivery of goods from a central depot to a number of 
outlets. Various solution to the problem are based on branch- 
and-bound algorithms that can yield exact (optimal) solutions. 
Unfortunately, the combinatorial nature of the problem tends to 
increase computer storage and time requirements dramatically 
with increasing n .  As a matter of fact, the problem belongs to 
the class of NP-hard problems [12], which require an amount of 
time exponential in n for an exact solution. 

As a result, much effort has been put into the development of 
heuristic algorithms, which, by their very nature, are not neces- 
sarily optimal, but require only a polynomial amount of compu- 
tation time. The trade-off is justified since a “good” solution is 
acceptable for most practical applications. In fact, Golden and 
Assad [8] point out that most heuristic solutions are asymptoti- 
cally optimal; i.e., their relative error goes to zero with large n.  
For this reason, we will use the term “optimal” in the sense of 
“near-optimal”-i.e., the best solution the heuristic algorithm 
can produce. By contrast, when referring to the mathematically 
exact optimal solution, we will use the term “absolute optimal.” 

The heuristic algorithms for the TSP fall into three classes: 

I )  Tour Construction Procedures: The heuristics are applied 
during the construction of the tour. Various heuristic rules for 
the selection of the next city to be included in the growing 
subtour have been suggested in the literature. Examples for this 
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method are: nearest neighbor, discussed and analyzed in [15]; 
Clarke and Wright savings, discussed and improved in [7]; near- 
est, arbitrary, cheapest, or farthest insertion, analyzed and tested 
in [151; and convex hull, discussed in [9]. 

2) Tour Improuement Procedures: A randomly constructed ini- 
tial tour is improved by exchanging one subset of links in the 
tour with another subset, until no further improvement is 
achieved. Examples of this method are the 3-opt method, intro- 
duced in [13], and the k-opt method, introduced in [14]. 

3) Composite Procedures: This is a simple yet effective refine- 
ment. First, a tour construction procedure is applied to produce 
a “good” initial tour. Second, one or even two tour improve- 
ment procedures are applied. Several variations of this method 
have been tested and compared by Golden [9]. 

A thorough comparison of all the above methods, with many 
experimental results (concerning accuracy and timing), is given 
in [91. A theoretical analysis of some of the tour construction 
procedures appears in [ 151. 

A. Limitations and Assumptions 
The basic form of the TSP includes the following two assump- 

tions: 

1) Symmetrical Distance Matrix: This assumption applies to 
the common case where the distance between location i and 
location j is the same in both directions. An example of a case 
that does not produce symmetrical distances is a distance matrix 
of intra-urban connections with one-way streets. Here the actual 
distance traveled between two locations is not necessarily the 
same in both directions. 

2) Triangle Inequality: The triangle inequality is fundamental 
in euclidean geometry and states that the sum of the lengths of 
any two sides in a triangle is greater than the length of the third 
side. One example of a case in which the triangle inequality 
does not necessarily hold are interurban roads in hilly areas. 

Not all of the heuristic algorithms above are capable of 
handling exceptions to the basic TSP. Unfortunately, experimen- 
tal results [9] relate only to the basic form of the TSP, and so do 
most other papers on the subject. 

B. Vehicle Routing 
A related class of problems is known as the vehicle routing 

problem (VRP). In the VRP, a set of routes must be designed, 
again, at minimal total cost. However, now each route leaves 
from and eventually returns to a depot or home base, while 
satisfying capacity constraints and meeting customer require- 
ments. The problem can be seen as an (at times much more 
demanding) extension of the standard TSP, with some or all of 
the following requirements and restrictions added [8]: 

An optimal tour between one central depot and many 
customers must be found for many vehicles traveling con- 
currently; 
Vehicles have maximum capacities; 
Vehicles have maximum travel time or time window con- 

Multiple depots, multiple capacities, multiple demands, etc., 

Recent research introduces branch-and-bound based methods 
that solve VRP’s with different constraints. For example, Gavish 
and Srikanth [6] solve large problems with up to 500 locations 
and multiple subtours, and Kolen et al. [ l l ]  solve problems with 
additional time window constraints, but with much fewer loca- 
tions ( n  = 15). This and other evidence in the literature indicate 
that computation time rises dramatically as more constraints are 
addressed. 

straints; 

may exist. 

........... .................................... 

Fig. 1 .  The triangle inequality does not hold when using the ordered pair 
model. 

For this reason, many researchers [SI, [16] base their approach 
on reducing the complexity of the VRP (by means of some 
heuristics) to the basic TSP, which may then be solved by any of 
the heuristic methods discussed previously. Clearly, this ap- 
proach yields only an approximate solution. 

111. A TOUR PLAN GENERATOR FOR MOBILE ROBOTS 
We have developed two complementary models for mobile 

robot applications that allow us to implement our TPG as a 
special case of the TSP. 

Model I: The foremost problem in tour planning for mobile 
robot applications stems from the fact that single-arm mobile 
robots can usually carry only one item at a time. If the robot is 
required to transport several objects from source locations to 
goal locations (one at a time) then a source must always be 
visited immediately prior to visiting a goal-a constraint conven- 
tional TSP algorithms cannot handle. Nevertheless, this problem 
is TSP-related and is known in the literature as the stacker 
crane problem [12]. 

As a solution to this problem, we treat each ordered pair 
(source and goal) as one location in the TSP. This concept can 
be visualized by picturing the vehicle entering a location i at 
source(i) and emerging from that location at goal(?) (see Fig. 1). 
The n X n cost matrix C comprises of elements cl. , , ,  which are 
the distances between goal(?) and source(j). As seen in Fig. 1, 
the distance between goal(i‘) and source($ differs from the 
distance between source(i) and goal(j’), and therefore C is 
asymmetric. Please note that for this model, the internal dis- 
tance between source(i) and goal(?) may be considered as zero. 
However, since internal distances may be needed to compute 
the overall length of a tour (see Model 11, below), they are 
stored as the diagonal elements c ~ , ~ ,  in C .  

It should also be noted that tasks involving only one physical 
location at a time (e.g., distribution tasks) can easily be adapted 
to the above model by simply assigning the same coordinates to 
artificially defined sources and goals. This is why ordered pair 
and distribution task commands can be issued in the same 
command sequence (feature (d) in Sec. 1-2.). 

From Fig. 1 it is also evident that the triangle inequality does 
not hold in this case: the triangle tour 1’ to 2; 2’ to 3; 3’ to 1, 
constituting a complete tour according to our model, does not 
yield c(1’ - 2) + c(2’ - 3) > c(3’ - 1). In practical mobile robot ap- 
plications the triangle inequality does not hold for yet another 
reason: a distance in the cost matrix is actually the length of a 
trip, which is computed as the shortest possible connection 
between two locations, while avoiding known obstacles. There- 
fore, a trip may be considerably longer than the straight 
(euclidean) distances between two locations. 

As is seen from the above discussion, the requirements in 
mobile robot applications exceed the two assumptions of the 
basic TSP. With regard to the three types of heuristic solutions 
mentioned in Section 11, tour improvement procedures cannot 
be used for this problem because they require symmetric dis- 
tance matrices [9]. Similarly, composite procedures cannot be 
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used since they make use of tour improvement procedures. 
Therefore, the most suitable heuristic approach is based on tour 
construction procedures. 

Model ZZ: In order to insert a visit to a home depot after a 
preprogrammed tour length L,, has been traveled, the tour 
must be broken up into subtours, each of which starts and 
terminates at the home location. The length of the subtour must 
not exceed L,,,. The TPG described below includes a mecha- 
nism for breaking up the complete tour into subtours. With this 
mechanism it is easy to adapt the algarithm to other physical 
constraints of similar type (i.e., where a physical resource is in 
limited supply and is exhausted during travel). Examples for 
such constraints include charge in a battery-powered vehicle; 
time in school bus scheduling or newspaper dispatching; capac- 
ity in a vehicle with capacity limitations; or position accuracy of 
a position sensor (e.g., a gyro), which drifts with increasing tour 
length or time. TSP’s with more than one subtour are also 
known as multiple traveling salesmen problems (MTSP). Solu- 
tions to MTSP’s are given in [6] and [lo]. However, these 
solutions assume that the number of subtours to be created is 
known in advance. 

IV. THE TPG ALGORITHM 

In mobile robots, onboard computation power is usually lim- 
ited, both in memory size and in computation speed. For this 
reason, a TPG algorithm that is small in size and fast is pre- 
ferred over larger and slower programs with higher accuracy. A 
simple heuristic algorithm was therefore considered the most 
suitable for onboard implementation. Out of the three classes of 
heuristic TSP algorithms (see Section II), we have chosen to 
work with tour construction procedures, since they offer a 
straightforward way to accommodate both models (I and 11, 
above). 

A tour construction procedure (also called insertion proce- 
dure) usually starts with the smallest possible subtour compris- 
ing two locations. Then, according to some heuristic rule, the 
procedure inserts new locations into this subtour until all loca- 
tions are included and the tour is complete. After each new 
location has been inserted, the tour length constraint can be 
tested. This is done by comparing the accumulated tour length 
(of the current subtour) to L,=. If L,,, is exceeded, the last 
inserted location is removed and the remaining subtour (now 
complying with L,,,) is saved. Subsequently, a new subtour is 
constructed until all locations have been included. Note that a 
subtour is near-optimal at any stage of this process, since the 
newly inserted location was selected by the heuristic selection 
rule of the algorithm. 

The following is the generic form for the closest (or farthest, 
or arbitrary) insertion algorithm for the standard TSP: 

Choose a starting location m. 
Choose a location n such that c(m,n)  is minimal (or 
maximal) and form subtour m -+ n -+ m. 
Find location k ,  not yet in the subtour, that is closest (or 
farthest, or arbitrary) to any location in the subtour. 
Find trip ( i , j )  in the subtour that minimizes c ( i , k ) +  
c ( k , j ) -  c(i, j ) .  Insert k between i and j. 
Repeat steps (3) and (4) until all locations are included in 
the tour. 

Calculation times for such algorithms are O b 2 )  [9].  Typically, 
one would run the same algorithm n times, choosing each one 
of the n locations once as the starting location, comparing costs 
of each run and selecting the tour with the lowest cost as the 
result. This changes the order of the resulting algorithm to 
O(n3) ,  but considerably improves the quality of the solution. In 
our application, however, subtours are likely to be created 
because of the tour length constraint. Since subtours must start 
and end at the same location, the algorithm cannot be run with 

TABLE I 
SAMPLE-RUN COORDINATES 

~~ 

RUN#32 
COORDINATES 

# X  y’ X Y 
~ 

718 
507 

33 
201 
650 
595 
186 
532 

279 
312 
171 

11 
258 
343 
143 
170 

718 
705 
620 
561 
391 
297 
373 
479 

279 
171 
233 
164 
279 
330 
327 
339 

TABLE I1 
ASYMMETRIC COST MATRIX FOR THE SAMPLE RUN 

RUN#32 
ASYMMETRIC COST-MATRIX C 

# 1 2 3 4 5 6 7 8  

1’ 0 108 108 194 327 424 348 246 
2’ 213 243 137 157 120 210 134 38 
3’ 693 672 590 528 373 308 374 476 
4‘ 582 528 474 391 328 333 359 429 
5’ 71 102 39 129 259 360 285 189 
6‘ 138 204 112 182 213 298 222 116 
7’ 549 519 443 375 246 217 262 352 
8‘ 215 173 108 29 178 284 223 177 

different starting locations, rendering this means of improve- 
ment useless. 

Nevertheless, we were able to improve results by running 
several similar algorithms for the same problem, and selecting 
the best run as the result. We run the generic insertion algo- 
rithm (comprising steps (1)-(5) above) with variations to step 3 
(the selection rule). The following six selection rules were em- 
ployed: 

SELECTI: Find location k ,  not in the subtour, farthest from 
the starting location. 

SELECT2: Find location k ,  not in the subtour, closest to the 
last chosen location. 

SELECT3: Find location k ,  not in the subtour, close to the 
last chosen location, but far from the first loca- 
tion, maximizing c(1, k ) -  c(k - l, k ) .  

SELECT4: CLOSEST INSERTION: find location k ,  not in 
the subtour, closest to any location in the subtour. 

SELECTS: FARTHEST INSERTION: find location k ,  not in 
the subtour, farthest from any location in the 
subtour. 

SELECT6: CHEAPEST INSERTION: for ( z , j )  in the sub- 
tour find location k ,  not in the subtour, minimiz- 
ing c(i’, k ) +  c (k ’ ,  j ) -  di‘, j ) .  

Please note that selection rules 1, 2, and 3 are our own 
heuristics, while rules 4, 5, and 6 have been suggested in the 
literature. Also, rules 1-5 are all of O(n2), while rule 6 is of 
O(n2 log n )  [121. 

V. EXPERIMENTAL RESULTS 
In order to obtain relevant data for empirical evaluation, 100 

random problems, each comprising n = 15 locations (one start- 
ing location and seven start/goal pairs), were created. Table I 
gives the coordinates for one such problem, and Table I1 shows 
the associated asymmetric cost matrix C. The diagonal elements 
of C hold the internal distance between the start and goal 
location of an ordered pair. This information is not needed for 
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Fig. 2. Sample problem with one start location and seven ordered pairs. 

TABLE 111 
ABSOLUTE OFTIMAL TOUR WITH ONE AND TWO subtours 

RUN#32 

With one subtour: 
Absolute optimal tour: 1 -+ 2 + 8 + 4 -+ 7 + 5 + 3 -+ 6 -+ 1 
L,,, = 2613 (set to 0.75*Cop, to force 2nd subtour) 
With two subtours: 
Absolute optimal tour: 1 + 3 + 6 -+ 1 + 2 + 8 -+ 4 + 7 + 5 -+ 1 

Cop, = 3485 

C.!... = 3625 

TABLE IV 
RESULTS OF INDIVIDUAL SELECTION RULES 

RUN#32 (L,,, = 2613, CAp, = 3625) 

Selection Rule 

SELECT1 
SELECT2 
SELECT3 
SELECT4 
SELECT5 
SELECT6 
TPG’s best 

Tour 

1 + 3 - + 7 + 6 + 5 + 1 + 2 - + 4 - + 8 + 1  
1 + 8 + 4 - + 7 + 6 - + 5 + 1 + 2 - + 3 + 1  
1 + 2 + 8 + 4 + 7 + 5 + 1 + 3 - + 6 + 1  
1 + 2 - + 8 - + 3 + 7 - + 5 + 1 + 4 - + 6 + 1  
1 + 2 + 8 - + 3 + 7 + 6 + 1 + 4 + 5 + 1  
1 + 7 + 6 - + 8 + 4 + 5 + 1 + 2 + 3 + 1  
1 + 2 + 8 + 4 + 7 + 5 + 1 + 3 - + 6 + 1  

cost 

4112 
4293 
3625 
3830 
3796 
4267 
3625 

13.43% 
18.42% 
0.00% 
5.65% 
4.71% 

17.71% 
0.00% 

choosing an optimal tour (and could be set equal O), since this 
distance must be traveled anyway for any possible tour. How- 
ever, this internal distance must be considered on behalf of the 
tour length constraint. 

Fig. 2 depicts the same example graphically. The starting 
location is labeled “l”, start/goal pairs are labeled “2” through 
“8”, and goal locations are distinguished by primes. Close in- 
spection of Fig. 2 shows the difficulty in finding an optimal tour 
manually, even for this relatively small problem. 

For each one of the 100 problems, the absolute optimal 
solution was calculated. This was possible because the problem 
size (n = 15) is very small. The cost of the absolute optimal tour 
(in terms of tour length) is named Copt. 

In order to enforce the creation of a tour comprising at least 
two subtours, the constraint for the maximal tour length L,,, 
was then set to 75% (arbitrarily chosen value) of the absolute 
optimal cost Cop,. (Clearly, if the admissible maximal length 
L,, is less than the length of the known absolute optimal tour, 

then the heuristic algorithm will have to build two or more 
subtours.) Recalculation of the new optimal cost, now under 
consideration of the maximal cost constraint L,,,, yielded a 
new optimal tour, shown in Table 111. The value of CLPt in 
Table 111 represents the total cost of the absolute optimal 
solution of the 2-subtour problem with the tour length con- 
straint. 

Subsequently, each one of the six heuristic algorithms was run 
for each of the 100 random problems. A typical result (for the 
above example) is shown in Table IV, where the relative error 
E,, (as compared to C&,) of each selection rule is shown. Since 
the TPG always runs all six selection rules for each problem, the 
TPG can choose the best result out of the six as the representa- 
tive result. In the example shown in Table IV, selection rule #3 
happened to find the exact optimal tour; therefore, the repre- 
sentative result shows Ere, = 0. Obviously, this is coincidental, 
and Ere, > 0 for most representative results. A better indication 
for the accuracy of the TPG would be an average of the relative 
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TABLE V 
AVERAGE ERROR Eayrg PRODUCED BY 

EACH SELECTION RULE 
WHEN RUN &ONE 

Average error 
Active rule E,,,, (100 runs) 

~~ 

only SELECT1 7.22% 
only SELECT2 7.12% 

only SELECT4 7.63% 

only SELECT6 10.03% 

only SELECT3 8.00% 

only SELECT5 7.45% 

TABLE VI 

(OR ALL EXCEPT ONE$ SELECTION RULES 

Average error E,, Contribution to joint 

AVERAGE ERROR E,,, PRODUCED BY ALL 

Active selection rules (100 runs) Derformance 

All Selection rules 
all except SELECT1 
all except SELECT2 
all except SELECT3 
all except SELECT4 
all except SELECT5 
all except SELECT6 

2.63% 
3.06% 
2.78% 
3.12% 
2.95% 
2.84% 
2.79% 

0.43 = 14.1% 
0.15 = 5.4% 
0.49 = 15.7% 
0.32 = 10.8% 
0.21 = 7.4% 
0.16 = 5.7% 

errors of representative results over a large number of problems. 
We will call such a value EaVrg. 

VI. INDEX OF PERFORMANCE 
As is evident from Table IV, the various selection rules 

performed quite differently on the same problem. However, 
none of the selection rules always performed well or poorly on 
all 100 problems. Additional heuristic selection rules can easily 
be added to the TPG. Even if the rules were bad, they might 
produce the best tour every once in a while. However, computa- 
tion time for the TPG grows with more selection rules to run. A 
good evaluation method would allow the programmer to identify 
and include only those heuristic rules that contribute signifi- 
cantly to the accuracy of the algorithm. Therefore, the question 
arises of how to evaluate the performance of heuristic selection 
rules. One approach would be to calculate the average relative 
error produced by each selection rule when run alone [9], [12]. A 
result of this test is shown in Table V. 

However, since the rules function as a team in the actual 
algorithm, their performance should be evaluated in that con- 
text. For this reason, we introduced another test. This time, the 
TPG was run for all 100 problems, omitting one of the six 
selection rules each time (i.e., the representative result was 
chosen out of the remaining five rules). The better Eavrg result- 
ing from the remaining selection rules, the lesser the contribu- 
tion of the omitted selection rule. This approach can be illus- 
trated by imagining a creative think-tank team working on a 
problem: If only the best idea counts, it is less important how 
often a team member comes up with another good idea, but 
rather how often he or she produces the best one. 

Table VI shows Eavrg for the TPG using all but one selection 
rule. The first entry, with all selection rules active, produced an 
average cost of 2.63% above the absolute optimal cost. In each 
of the succeeding runs, one of the selection rules was omitted. 

As can be learned from Table VI, the best contribution comes 
from selection rule 3. (To our knowledge, the heuristics of this 
rule have not been suggested elsewhere in the context of the 
TSP. However, it must be emphasized that this experiment has 
been performed with a tour length constraint.) Intuitively, selec- 

tion rule 3 can be understood as an attempt to fill as many 
remote locations as possible into one subtour, thereby avoiding 
the high costs associated with cases where a subtour had to be 
closed due to L,,, before covering all locations in a remote 
area. 

From Table VI it can also be learned that selection rules 2 
and 6 offer only small contributions. Therefore, one might want 
to consider eliminating them all together. This would be particu- 
larly efficient with rule 6, since this heuristic is computationally 
more expensive than the others. The remaining rules are all of 
O(n2).  

VII. CONCLUSION 
A TPG optimized specifically for mobile robot applications 

has been developed. Features of this TPG include the ability to 
insert home visits into the tour automatically, as well as to deal 
with ordered source/goal pairs that must be visited in proper 
sequence. A model has been developed that allows us to repre- 
sent the problem as a TSP with an asymmetric cost matrix and 
non-Euclidean distances. 

New heuristic tour construction procedures designed specifi- 
cally for mobile robot requirements have been tested, and they 
compare favorably with known heuristics. A heuristics team 
approach was employed to further improve the TPG’s perfor- 
mance. The index of performance method introduced in Section 
VI provides an efficient tool to evaluate the performance of 
additional selection rules. This method is particularly suited to 

heuristic team approach used in this TPG. 
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