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DC servomotors as applied to robots and machine tools can be applied either as torque control devices or speed control
devices. For torque control the current to the motor is the input variable, and for speed control the voltage is the
input variable. The selection of the appropriate type of control variable is based upon the operating systems and in
each case a different control loop structure is required. The present paper is concerned with the design of the control
Toops and the selection of controller types. Guidelines are presented for choosing the appropriate type of control Toop

for robot systems.

Introduction

Most small to medium size robots utilize DC servomotor actuators.
Two alternative approaches exist to the control of the motion of
a robot arm driven by DC motors [1]. One approach is to control
the torque of the robot arm by manipulating the motor current.
Another approach is to control the motor rotational speed by ma-
nipulation of the motor voltage. The first approach, based on ma-
nipulation of current,treats the torque produced by the motor as
an input to the robot joint as shown in Fig. 1. The second ap-
proach, based on manipulation of voltage, treats the robot arm as
a load disturbance acting on the motor's shaft, as shown in

Fig. 2. This basic distinction is not merely a philosophical one,
and has important practical consequences for the final control
system design.

A straight forward approach to the control of robot arm motion is
to apply at each joint the necessary torque to move the manipula-
ted object and to overcome friction, gravity forces, and dynamic
torques due to the moment of inertia. Torque control, based on
manipulation of DC motor current, utilizes usually a current
amplifier in the motor's drive unit. A current amplifier is a de-
vice which supplies a current proportional to its input voltage,
and has a high output resistance.

The alternative approach is to control the speed of the robot
arm by manipulation of the DC motor voltage, utilizing a voltage
amplifier in the motor's drive unit. Similar approach is alsa
usually used in hydraulic driven robots. A voltage amplifier
provides an output voltage proportional to its input voltage,
and is capable to supply the current required by the motor.

The present paper compares the two approaches and provides re-
commendations to the adjustments of the gains in the two loops.
The controller in all cases is a microprocessor, but the analysis
neglects the effect of sampling in the control loop. This is
allowed since the sampling period is much smaller than the domi-
nant time constant of the control loop.

Control Loop Using Current Amplifier

One approach to the control of robot joint motions is to apply
an appropriate torque to overcome gravity, friction, and dynamic
torques due to the moment of inertia, J. Several such control
Toops are discussed in the literature [2-8], and a relatively
sophisticated loop with a compensation for the moment of inertia
and gravity torque is discussed in this paper,

The block diagram of the compensated torque control loop is shown
in Fig. 3. It contains a proportional-derivative (PD) controller,
where the proportional gain causes a finite steady-state error
(for a step input) and the derivative gain K4 must be added from

stability considerations. Compared with basic control loops, the

compensated loop in Fig. 3 contains the following features:

1. An estimation of the momeni of inertia J is inserted as a
programmed gain. The gain J can be introduced either as in
Fig. 3.{7] or in the acceleration feedforward block alone,
i.e., Js? [6].

2. An estimation of the static torque due to gravity T4 is pro-
gramned in order to reduce (or eliminate) the re1evgnt
steady-state error.

3. An acceleration feedforward term is added in order to improve
the accuracy in obtaining the required dynamic torgue.

The equations of the compensated Toop are as follows:
LT

T = ([(6,-8) (Kys+k)) + 520,20 + KK, (1)

and o = (T - TS)/052 (2)

Combining Eqs. (1) and (2) yields the closed-loop equation:
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Equation (3) represents a second order System with a damping

factor of
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In this system the amplifier gain is adjusted such that

KKy =1 (6)

Consequently, Eq. (3) becomes
=(s?+Kls+KZ)er - (Ts-ig/s)/a

= (7)
(370)s2 + Kys + K,
and the steady-state position error for a step input is
T -7 /s
E=9 -~pg=-=_-9 (8)
r
JK,

where T_ is the Laplace transform of a torque which at the
steady State is a constant Tg caused by the gravity force, namely

T, = SJ (9)

If the estimated torque f is equal to the actual torque T ,
the steady-state position® error is zero. g

Similarly, if the estimated inertia Jis equal to the actual

inertia, J, Eq. (7) yields the ideal situation 0=6, and conse-
quently, from Eq. (2)

T
T = Js%9 + gﬂ (10)

so that the motor always produces the required dynamic and
static torques.

The obvious problem with this type of system is the need to have
an accurate estimate of the changing gravity torque and moment
of inertia in order to obtain the desired position and dynamic
response. If the moment of inertia is well estimated, then

J = J and the ideal response e(t) = 6, is obtained regardless of
t. If, however, J = J, catastrophic results might occur. This is
demonstrated in Fig. 4. Assume that the gain J was adjusted so
that ¢ = 0.71 for J = Jay and consequently the corresponding
response is an ideal step. If the actual J becomes 8 times
larger, then the damping factor is reduced to 0.71//8 = 0.25,
which results in an overshoot of 46%. A similar phenomenon
occurs also with the basic loop, However, if the actual J be-
comes 8 times smaller than J, then 6(0) = Bed and the correspon-
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ding overshoot is 700%! This must be avoided by all means.

The compensated loop can operate either with a variable gain.
where & varies during the arm motion, or with a fixed gain J.
If J is a fixed gain, the best performance is obtained by ad-
justing it to J = Jyip. This guarantees that J/J < 1. When the
actual inertia is at its minimum, the maximum damping factor is
achieved, as can be seen from Eq. (4). The minimum damping
factor occurs at Jp,,, so to avoid large overshoots it is desi-
rable to adjust the gains such that ;uin > 1. This Min-Max ad-
justment method produces

_ K min

[ = =
min =~ 2 K?Jmax > 1
and

— /Jmax

min J

Figure 5 demonstrates responses obtained by this method, when
variations of 10;1 are expected in the effective inertia. (This
range of variations is used in [9]).The minimum damping factor
is adjusted to ¢ = 1.05, and results in a maximum overshoot of
11%, For a smaller inertia the overshoot is smaller as well. For
J = Jpin = 0.7 Jpax the response is an ideal step. However, if
for any reason J<Jyjn an overshoot occurs at t = 0, as is shown
by the dashed line in Fig. 5.

The compensated loop might provide a satisfactory solution for
variable-gain loops, in which the value of J is continuously ad-
justed by the robot computer. In practice, however, commercial
robots operate with fixed gain loops, and in these cases the com-
pensated loop has the following drawbacks:

1. There always exists an overshoot to a step response. This
situation can be remedied if a tachometer feedback is added
to the control loop. In this case, however, the loop is no
Tonger a torque control loop.

2. The double derivative (s?) does not actually function when
step and ramp inputs are provided. The above analysis assumed
linear model, and consequently the response of a derivative
to a step or a double derivative to a ramp input is an in-
finite impulse. But the allowable current to the motor is li-
mited. This means that during the initial starting period the
respouse of the motor is

K.I t2

0 = _1%5;«- (1)

regardless of the value of J or 6,. This response continues
until the current is reduced be1o$ the Iy value by the feed-
back. Later on the input is constant (for a step) and the
double derivative has no effect. Thus the compensated loop
behaves for step or ramp inputs similarly to the basic loop.

3. Errors due to approximations in modeling (e.g., T=Jo + T_)
and system nonlinearities prevent the ideal response eve
for J = J.

4. Gravity torques must be computed in real time in order to be
compensated. This requires a large program and a lengthy
computing time [6].

Contro] Loop Using Voltage Amplifier

An alternative approach is to control the speed of the robot
joint by maripulation of the motor voltage utilizing a voltage
amplifier [10-12] as shown in Fig. 2. A block diagram of a

basic control loop is shown in Fig. 6. The output of the Toop is
defined as either the speed or the position of the robot joint,
The torque T_ is mainly due to coupling inertia and gravity acts
as a disturbince on the motor.

The control loop in Fig. 6 includes an inner Toop consisting of

the voltage amplifier with a gain Ky, the DC motor and a tacho-

meter as a velocity feedback device with a gain Ke. The transfer
function of the inner loop is derived as follows.

The input voltage to the motor is

Vis) = KDV (s) - Kew(s)] (12)

Combining the motor's speed equation,

w(s) = [KmV - (Rﬁn/Kt)TS]/(1 + s7)

with Eq. ( 12 ) yields:

o(s) - uKaKmVu(s) - (RKm/Kt)aTs(S) 13)

T+ sar
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where we have defined an attenuation factor

A 1 (14)
a fm
The effect of the tachometer feedback is to reduce the time con-
stant {since a<!, then ar<t), to reduce the effect of the load
torque, to reduce any nonlinearities of the voltage amplifier,
and to facilitate the adjustment of the overall gain by adjusting
the gain Kf.

Comparing the Toop structure in Fig. 3 and Fig. 6 shows that the
derivative controller is no longer necessary and a proportional
controller, with a gain K., is sufficient. The corresponding
equation is’

Kar(s) - K Ts(s)

a(s) = TS Te Y (15)
where K is the open-loop gain defined by
K= ak Kk K. (16)

Kq is a gain defined by

and

T = a1t = (17)
KR

The characteristic equation of the closed loop is of the second
order where the damping factor is

e (18)

and the natural frequency is

5

(19)

W=
n

The actual position response to a position step input (for T.=0)
in a critically damped system (z = 1) is shown in Fig. 7. Note
that in this case the overshoot is zero, compared with 11% in
Fig. 5. The problem is, however, that since +' is proportional
to the inertia J, the present loop also has the unfavorable situ-
ation of a damping factor which depends on a changing moment of
inertia. In addition, this loop has not remedied the problem of
the existence of a torque dependent position error at the steady
state.

Elimination of Stationary Position Errors

The steady-state position error of the control loop shown in
Fig. 6 is

E = EK_S (20)

Namely a position error due to gravity forces exists at the end-
point. The explanation of this error can be found by substituting
the values Kq and X from Eq. (16) into (20) which yields

P

EKaKc = 4; Tg (21)

Equation (21) means that when the joint is stationary the vol-
tage amplifier supplies a voltage V = EKzK; to counteract the
effect of the gravity torque T4. To generate this voltage a posi-
tion error E must exist and cogsequently the joint does not reach
the required end-point position. In the current-amplifier loop
this situation was remedied by programming an estimated gravity
torque to counteract the real one. Obviously, the same approach
can be also applied here. However, since the real gravity

torque depends upon the angle values of the various joints, it is
difficult to have an accurate estimate of the torque values for
every position of the manipulator, and therefore this method has
only low practical usefulness.

An alternative approach to eliminate the stationary (i.e., the
steady-state) position error is to add an integral or a propor-
tional-integral (PI) controller into the internal loop of Fig. 6.
The input to an integrator at steady state must be zero, and
therefore with this loop w = V; = 0, Since V, is zero, the steady-
state position error £ is zero as well, and ghe joint reaches

the desired end position. The output of the PI controller ge~
nerates the voltage V required to overcome the effect of gravity
at steady state.

The proposed control loop requires a careful design since the



characteristic equation is of the third order rather than second
order as in the previous loop (see £Eq. 15), and inappropriate
selection of the loop gains will cause an unstable system. An
improved stability is obtained by using the PI controller in the
internal loop, rather than an integral alone. The Pl-controller
guarantees zero position error when the joint is in no-motion
together with an unoscillatory response during the motion itself.

Conclusions

Two alternative methods to the control of robot arms have been
proposed: Torque control utilizing a current amplifier and speed
control utilizing a voltage amplifier. The main problem with the
torque control system is the need to have an accurate estimate
of the moment of inertia at each joint of the robot arm in order
to obtain the desired trajectory. If the actual value of the
inertia is smaller than expected, then the torgue applied is
larger than required. This torque is translated to higher accele-
ration and consequently higher velocity. This can have disas-
trous consequences, for example, a part can be struck and broken
since the velocity is not zero as desired at the target position.
In order to avoid this situation, a Min-Max adjustment policy
has been proposed in the paper.

An important advantage of the torque control approach is that we
can maintain a desired torque or force. This is useful in some
robotics applications, such as screwing or assembly of mating
parts. Another advantage is that when the robot arm enounters
resistance (e.q., the gripper touches a rigid obstacle) it main-
tains a constant torque, and does not try to draw additional
power from the electrical source.

The alternative method provides speed control of the robot joints.
The main advantage of this approach is that variations in the
moment of inertia effects only the time constant of the response
but do not result in any disastrous consequences, and does not
affect the time required to reach the target position. The arm
always approaches the target smoothly with a very small speed.
The problem with this approach is that the torque is not con-
trolled, and the motor will draw from the voltage amplifier what-
ever current is required to overcome the disturbance torque. This
can lead to burning of the amplifier's fuse, when the robot arm
encounters a rigid obstacle. Another disadvantage is that this
system is not suitable for certain assembly tasks, such as

press fitting and screwing, which require a constant torque or
force.

The selected control approach should be dependent on the applica-
tion and the environment in which the robot arm operates. When
the arm is free to move along some coordinate (e.g., spray pain-
ting robots), the specification of velocity is appropriate. When
the robot's end-effector might be in contact with another object
in such a way as to prevent motion along a coordinate, then the
specification of torque is appropriate. Note that either velocity
or torque may be specified, but not both.
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